题面
(sigma_0(i)) 表示(i) 的约数个数
求(S_k(n)=sum_{i=1}^nsigma_0(i^k)mod 2^{64})
多测,(Tle10^4,n,kle10^{10})
题解
令(f(i)=sigma_0(i^k))首先可以发现几个性质
[f(1)=1
]
[f(p)=k+1
]
[f(p^c)=kc+1
]
[f(ab)=f(a)f(b),gcd(a,b)=1
]
也就是说(f)是个积性函数,直接上(Min\_25)筛就行了
然后把本题里的(k)改成(2)和(3)就可以水过(DIVCNT2)和(DIVCNT3)了
//minamoto
#include<bits/stdc++.h>
#define R register
#define ll unsigned long long
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
ll read(){
R ll res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R ll x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='
';
}
const int N=1e5+5;
bitset<N>vis;int p[N],id1[N],id2[N],sqr,m;
ll n,k,lim,tot,w[N<<1],sp[N],g[N<<1],h[N<<1];
void init(int n){
fp(i,2,n){
if(!vis[i])p[++tot]=i;
for(R int j=1;j<=tot&&1ll*i*p[j]<=n;++j){
vis[i*p[j]]=1;
if(i%p[j]==0)break;
}
}lim=tot;
}
ll S(ll x,int y){
if(x<=1||p[y]>x)return 0;
int id=(x<=sqr)?id1[x]:id2[n/x];
ll res=g[id]+h[id]-(k+1)*(y-1);
for(int i=y;i<=tot&&1ll*p[i]*p[i]<=x;++i){
ll tmp=p[i];
for(R int e=1;tmp*p[i]<=x;tmp*=p[i],++e){
id=(x/tmp<=sqr)?id1[x/tmp]:id2[n/(x/tmp)];
res+=S(x/tmp,i+1)*(k*e+1)+k*(e+1)+1;
}
}
return res;
}
void solve(){
n=read(),k=read(),sqr=sqrt(n),m=0;
tot=upper_bound(p+1,p+1+lim,sqr)-p-1;
for(R ll i=1,j;i<=n;i=j+1){
j=n/(n/i),w[++m]=n/i;
w[m]<=sqr?id1[w[m]]=m:id2[n/w[m]]=m;
g[m]=(w[m]-1)*k;
h[m]=(w[m]-1);
}
fp(j,1,tot)for(R int i=1;1ll*p[j]*p[j]<=w[i];++i){
int id=(w[i]/p[j]<=sqr)?id1[w[i]/p[j]]:id2[n/(w[i]/p[j])];
g[i]-=g[id]-(j-1)*k;
h[i]-=h[id]-(j-1);
}
print(S(n,1)+1);
}
int main(){
// freopen("testdata.in","r",stdin);
init(N-5);
int T=read();
while(T--)solve();
return Ot(),0;
}