zoukankan      html  css  js  c++  java
  • Train Problem II(卡特兰数 组合数学)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1023

    Train Problem II

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 12035    Accepted Submission(s): 6422


    Problem Description
    As we all know the Train Problem I, the boss of the Ignatius Train Station want to know if all the trains come in strict-increasing order, how many orders that all the trains can get out of the railway.
     
    Input
    The input contains several test cases. Each test cases consists of a number N(1<=N<=100). The input is terminated by the end of file.
     
    Output
    For each test case, you should output how many ways that all the trains can get out of the railway.
     
    Sample Input
    1 2 3 10
     
    Sample Output
    1 2 5 16796
    Hint
    The result will be very large, so you may not process it by 32-bit integers.
     
    Author
    Ignatius.L
     
    Recommend
    We have carefully selected several similar problems for you:  1133 1022 1130 1131 1134 
     
    题目大意:问你有n辆火车,要求进站顺序是1-n  问你有多少种出站次序
    思路:要用到大数,所以推荐用java来写,方便很多。  这题就是一个卡特兰数的板子
    看代码:
    import java.math.BigDecimal;
    import java.math.BigInteger;
    import java.util.Scanner;
    
    public class Main {
        
        
        
        public static void main(String args[]) {
            
            Scanner cin = new Scanner(System.in);
            
            /*
             * 卡特兰数性质:h[n]=h[n-1]*(4n-2)/(n+1)
             */
            BigInteger dp[] = new BigInteger[150];
            dp[1]=BigInteger.valueOf(1);
            for(int i=2;i<=100;i++) {
                dp[i]=dp[i-1].multiply(BigInteger.valueOf(4*i-2)).divide(BigInteger.valueOf(i+1));
            }
            
            
            while(cin.hasNext()) {
                int n=cin.nextInt();
                System.out.println(dp[n]);
            }
        }
    }
    当初的梦想实现了吗,事到如今只好放弃吗~
  • 相关阅读:
    [51nod1384]全排列
    [51nod1256]乘法逆元
    [51nod1106]质数检测
    [51nod1058]求N!的长度
    2017 world final
    [Manacher+bit]Palindrome
    [hdu3068]最长回文(Manacher算法)
    [trie]字典树模板
    [凸包]Triangles
    LintCode-366.斐波纳契数
  • 原文地址:https://www.cnblogs.com/caijiaming/p/10724785.html
Copyright © 2011-2022 走看看