zoukankan      html  css  js  c++  java
  • poj 3071 概率DP 位运算

    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu

    Description

    Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. In each round of the tournament, all teams still in the tournament are placed in a list in order of increasing index. Then, the first team in the list plays the second team, the third team plays the fourth team, etc. The winners of these matches advance to the next round, and the losers are eliminated. After n rounds, only one team remains undefeated; this team is declared the winner.

    Given a matrix P = [pij] such that pij is the probability that team i will beat team j in a match determine which team is most likely to win the tournament.

    Input

    The input test file will contain multiple test cases. Each test case will begin with a single line containing n (1 ≤ n ≤ 7). The next 2n lines each contain 2n values; here, the jth value on the ith line represents pij. The matrix P will satisfy the constraints that pij = 1.0 − pji for all ij, and pii = 0.0 for all i. The end-of-file is denoted by a single line containing the number −1. Note that each of the matrix entries in this problem is given as a floating-point value. To avoid precision problems, make sure that you use either the double data type instead of float.

    Output

    The output file should contain a single line for each test case indicating the number of the team most likely to win. To prevent floating-point precision issues, it is guaranteed that the difference in win probability for the top two teams will be at least 0.01.

    Sample Input

    2
    0.0 0.1 0.2 0.3
    0.9 0.0 0.4 0.5
    0.8 0.6 0.0 0.6
    0.7 0.5 0.4 0.0
    -1

    Sample Output

    2

    Hint

    In the test case above, teams 1 and 2 and teams 3 and 4 play against each other in the first round; the winners of each match then play to determine the winner of the tournament. The probability that team 2 wins the tournament in this case is:

    P(2 wins)  = P(2 beats 1)P(3 beats 4)P(2 beats 3) + P(2 beats 1)P(4 beats 3)P(2 beats 4)
    = p21p34p23 + p21p43p24
    = 0.9 · 0.6 · 0.4 + 0.9 · 0.4 · 0.5 = 0.396.

    The next most likely team to win is team 3, with a 0.372 probability of winning the tournament.

     1 #include <cstdio>
     2 #include <cstring>
     3 #include <iostream>
     4 #include <algorithm>
     5 #include <vector>
     6 #include <queue>
     7 #include <set>
     8 #include <map>
     9 #include <string>
    10 #include <cmath>
    11 #include <stdlib.h>
    12 #define MAXSIZE 500//(1<<7=2^7=128)
    13 using namespace std;
    14 
    15 int n;
    16 double dp[MAXSIZE][MAXSIZE],p[MAXSIZE][MAXSIZE];
    17 
    18 int get(int i,int j)//i,j队伍在第k轮(其实是k+1)轮交锋
    19 {
    20     for(int k = n-1;k>=0;k--)
    21         if((i&(1<<k))^(j&(1<<k)))//注意括号!!!
    22         return k;
    23 }
    24 //dp[i][k] 表示第k轮,i赢的概率
    25 int main()
    26 {
    27     freopen("caicai.txt","r",stdin);
    28     while(~scanf("%d",&n))
    29     {
    30         if(n==-1)
    31             break;
    32         memset(p,0,sizeof(p));
    33         memset(dp,0,sizeof(dp));
    34         int i,j,k;
    35         for(i = 0;i<(1<<n);i++)
    36             for(j = 0;j<(1<<n);j++)
    37                 scanf("%lf",&p[i][j]);
    38         for(i = 0;i<(1<<n);i++)
    39             dp[i][0] = 1.0;
    40         for(k = 0;k<n;k++)//k从0开始,dp数组从1开始,0是自己跟自己对抗
    41             for(i = 0;i<(1<<n);i++)
    42                 for(j = i+1;j<(1<<n);j++)
    43                 {
    44                     int t = get(i,j);
    45                     if(t==k)
    46                     {
    47                         dp[i][k+1] += dp[i][k]*dp[j][k]*p[i][j];//累加
    48                         dp[j][k+1] += dp[i][k]*dp[j][k]*p[j][i];
    49                     }
    50                 }
    51         double mx = 0;
    52         int ans = 0;
    53         for(i = 0;i<(1<<n);i++)
    54         {
    55             if(dp[i][n]>mx)
    56             {
    57                 mx = dp[i][n];
    58                 ans = i;
    59             }
    60         }
    61         cout<<ans+1<<endl;
    62     }
    63     return 0;
    64 }
    View Code
  • 相关阅读:
    Android内存管理篇
    Android内存管理篇
    Java:ServiceLoader未加载服务提供实现类
    Java:SPI机制
    利用向量积(叉积)计算三角形的面积和多边形的面积
    VMware虚拟机安装WinXP出现错误output error file to the following location A:GHOSTERR.TXT
    @media与css先后顺序产生的优先级问题
    css 始终显示滚动条,内容超出显示有滑块的滚动条,内容没有超出显示空的滚动条
    css 内容溢出显示垂直滚动条,内容不超出就不显示滚动条
    css 一行或多行文字溢出以...的形式隐藏
  • 原文地址:https://www.cnblogs.com/caitian/p/5822800.html
Copyright © 2011-2022 走看看