zoukankan      html  css  js  c++  java
  • PAT 甲级 1021 Deepest Root (25 分)(bfs求树高,又可能存在part数part>2的情况)

    1021 Deepest Root (25 分)
     

    A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains a positive integer N (≤) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N1 lines follow, each describes an edge by given the two adjacent nodes' numbers.

    Output Specification:

    For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print Error: K components where K is the number of connected components in the graph.

    Sample Input 1:

    5
    1 2
    1 3
    1 4
    2 5
    

    Sample Output 1:

    3
    4
    5
    

    Sample Input 2:

    5
    1 3
    1 4
    2 5
    3 4
    

    Sample Output 2:

    Error: 2 components

    题意:

    给出n个结点和n-1条边,问它们能否形成一棵n个结点的树,如果能,从中选出结点作为树根,使整棵树的高度最大。按升序输出所有满足要求的可以作为树根的结点。 如果不是一棵树,则输出cout<<"Error: "<<part<<" components";

    思路:

    bfs求高度,如果有多个部分,再bfs数有几个部分,part可能大于2。一开始没考虑,测试点2过不了。

    5
    1 2
    1 3
    3 1
    2 3
    Error: 3 components

    AC代码:

    #include<bits/stdc++.h> 
    using namespace std;
    int n;
    vector<int>v[10005];
    struct node{
        int k;//节点的值 
        int h;//在第几层 
    };
    queue<node>q;
    queue<int>ans;
    int in[100005];//在不在队列里 
    int main(){
        cin>>n;
        for(int i=1;i<=n-1;i++){
            v[i].clear();
        }
        while(!q.empty()) q.pop();
        while(!ans.empty()) ans.pop();
        for(int i=1;i<=n-1;i++){
            int x,y;
            cin>>x>>y;
            v[x].push_back(y);
            v[y].push_back(x);
        }
        int maxH=0;
        memset(in,0,sizeof(in));
        int part=1; 
        for(int i=1;i<=n;i++)
        {
            //以i为树根
            int height=0;
            memset(in,0,sizeof(in));
            node x;
            x.k=i;
            x.h=1;
            q.push(x);
            in[i]=1;//标记已访问 
            while(!q.empty())
            {
                node x=q.front();
                q.pop();
                height=max(height,x.h);//更新高度 
                for(int j=0;j<v[x.k].size();j++)//遍历与 x.k相连的节点 
                {
                    int k1=v[x.k].at(j);
                    if(in[k1])//被访问过了 
                    {
                        continue;
                    }
                    node y;
                    y.k=k1;
                    y.h=x.h+1;//新的一层高度+1再放进队列 
                    q.push(y);
                    in[k1]=1;            
                }            
            }
            //先检查是不是一个块的
            for(int j=1;j<=n;j++)
            {
                if(in[j]!=1)
                {
                    part=0;
                    break;
                }
            }
            if(!part)
            {
                break;
            }
            //cout<<i<<" "<<height<<endl;
            //更新高度
            if(height>maxH)
            {
                maxH=height;
                while(!ans.empty()) ans.pop();//更新了就清空 
                ans.push(i);
            }else if(height==maxH)
            {
                ans.push(i);
            }
        }
        if(!part){
            part=1;
            for(int j=1;j<=n;j++)
            {//bfs数数有多少块 
                if(in[j]!=1)
                {
                    part++;//块数+1 
                    node x;
                    x.k=j;
                    x.h=1;
                    q.push(x);
                    in[j]=1;
                    while(!q.empty())
                    {
                        node x=q.front();
                        q.pop();
                            for(int p=0;p<v[x.k].size();p++)
                            {
                                int k1=v[x.k].at(p);
                                if(in[k1])
                                {
                                    continue;
                                }
                                node y;
                                y.k=k1;
                                y.h=x.h+1;
                                q.push(y);
                                in[k1]=1;            
                            }
                        }
                }
            }
            cout<<"Error: "<<part<<" components";
        }else{
            while(!ans.empty()){
                cout<<ans.front()<<endl;
                ans.pop();
            }
        }
        return 0;    
    }
     
  • 相关阅读:
    软件测试课堂练习
    JSP第一次作业
    安卓第六次作业
    安卓第五次作业
    第四次安卓作业
    JSP第四周
    软件测试课堂练习3.4
    Android数据库表
    Android购物菜单
    Android增删改查
  • 原文地址:https://www.cnblogs.com/caiyishuai/p/11336281.html
Copyright © 2011-2022 走看看