zoukankan      html  css  js  c++  java
  • Python SciPy库——插值与拟合

    插值与拟合

    原文链接:https://zhuanlan.zhihu.com/p/28149195

    1.最小二乘拟合

    实例1

    # -*- coding: utf-8 -*-
    
    import numpy as np
    import matplotlib.pyplot as plt
    from scipy.optimize import leastsq
    ## 设置字符集,防止中文乱码
    import matplotlib
    matplotlib.rcParams['font.sans-serif']=[u'simHei']
    matplotlib.rcParams['axes.unicode_minus']=False
    
    plt.figure(figsize=(9,9))
    x=np.linspace(0,10,1000)
    X = np.array([8.19, 2.72, 6.39, 8.71, 4.7, 2.66, 3.78])
    Y = np.array([7.01, 2.78, 6.47, 6.71, 4.1, 4.23, 4.05])
    #计算以p为参数的直线和原始数据之间的误差
    def f(p):
        k, b = p
        return(Y-(k*X+b))
    #leastsq使得f的输出数组的平方和最小,参数初始值为[1,0]
    r = leastsq(f, [1,0])
    k, b = r[0]
    print("k=",k,"b=",b)
    
    plt.scatter(X,Y, s=100, alpha=1.0, marker='o',label=u'数据点')
    
    y=k*x+b
    
    ax = plt.gca()
    
    ax.set_xlabel(..., fontsize=20)
    ax.set_ylabel(..., fontsize=20)
    #设置坐标轴标签字体大小
    
    plt.plot(x, y, color='r',linewidth=5, linestyle=":",markersize=20, label=u'拟合曲线')
    
    plt.legend(loc=0, numpoints=1)
    leg = plt.gca().get_legend()
    ltext  = leg.get_texts()
    plt.setp(ltext, fontsize='xx-large')
    
    plt.xlabel(u'安培/A')
    plt.ylabel(u'伏特/V')
    
    plt.xlim(0, x.max() * 1.1)
    plt.ylim(0, y.max() * 1.1)
    
    plt.xticks(fontsize=20)
    plt.yticks(fontsize=20)
    #刻度字体大小
    
    
    plt.legend(loc='upper left')
    
    plt.show()

    k= 0.6134953491930442 b= 1.794092543259387

    实例2

    # -*- coding: utf-8 -*-
    
    #最小二乘拟合实例
    import numpy as np
    from scipy.optimize import leastsq
    import pylab as pl
    ## 设置字符集,防止中文乱码
    import matplotlib
    matplotlib.rcParams['font.sans-serif']=[u'simHei']
    matplotlib.rcParams['axes.unicode_minus']=False
    
    def func(x, p):
        """
        数据拟合所用的函数: A*cos(2*pi*k*x + theta)
        """
        A, k, theta = p
        return A*np.sin(k*x+theta)   
    
    def residuals(p, y, x):
        """
        实验数据x, y和拟合函数之间的差,p为拟合需要找到的系数
        """
        return y - func(x, p)
    
    x = np.linspace(0, 20, 100)
    A, k, theta = 10, 3, 6 # 真实数据的函数参数
    y0 = func(x, [A, k, theta]) # 真实数据
    y1 = y0 + 2 * np.random.randn(len(x)) # 加入噪声之后的实验数据    
    
    p0 = [10, 0.2, 0] # 第一次猜测的函数拟合参数
    
    # 调用leastsq进行数据拟合
    # residuals为计算误差的函数
    # p0为拟合参数的初始值
    # args为需要拟合的实验数据
    plsq = leastsq(residuals, p0, args=(y1, x))
    
    print (u"真实参数:", [A, k, theta] )
    print (u"拟合参数", plsq[0]) # 实验数据拟合后的参数
    
    pl.plot(x, y0, color='r',label=u"真实数据")
    pl.plot(x, y1, color='b',label=u"带噪声的实验数据")
    pl.plot(x, func(x, plsq[0]), color='g', label=u"拟合数据")
    pl.legend()
    pl.show()

    真实参数: [10, 3, 6]
    拟合参数 [-1.16428658  0.24215786 -0.794681  ]

    2.插值

    实例1

    # -*- coding: utf-8 -*-
    
    # -*- coding: utf-8 -*-
    
    import numpy as np
    import pylab as pl
    from scipy import interpolate 
    import matplotlib.pyplot as plt
    ## 设置字符集,防止中文乱码
    import matplotlib
    matplotlib.rcParams['font.sans-serif']=[u'simHei']
    matplotlib.rcParams['axes.unicode_minus']=False
    
    x = np.linspace(0, 2*np.pi+np.pi/4, 10)
    y = np.sin(x)
    
    x_new = np.linspace(0, 2*np.pi+np.pi/4, 100)
    f_linear = interpolate.interp1d(x, y)
    tck = interpolate.splrep(x, y)
    y_bspline = interpolate.splev(x_new, tck)
    
    plt.xlabel(u'安培/A')
    plt.ylabel(u'伏特/V')
    
    plt.plot(x, y, "o",  label=u"原始数据")
    plt.plot(x_new, f_linear(x_new), label=u"线性插值")
    plt.plot(x_new, y_bspline, label=u"B-spline插值")
    
    pl.legend()
    pl.show()

    实例2

    # -*- coding: utf-8 -*-
    
    import numpy as np
    from scipy import interpolate
    import pylab as pl
    ## 设置字符集,防止中文乱码
    import matplotlib
    matplotlib.rcParams['font.sans-serif']=[u'simHei']
    matplotlib.rcParams['axes.unicode_minus']=False
    
    #创建数据点集并绘制
    pl.figure(figsize=(12,9))
    x = np.linspace(0, 10, 11)
    y = np.sin(x)
    ax=pl.plot()
    
    pl.plot(x,y,'ro')
    #建立插值数据点
    xnew = np.linspace(0, 10, 101)
    for kind in ['nearest', 'zero','linear','quadratic']:
        #根据kind创建插值对象interp1d
        f = interpolate.interp1d(x, y, kind = kind)
        ynew = f(xnew)#计算插值结果
        pl.plot(xnew, ynew, label = str(kind))
    
    pl.xticks(fontsize=20)
    pl.yticks(fontsize=20)
    
    pl.legend(loc = 'lower right')
    pl.show()

    B样条曲线插值
    一维数据的插值运算可以通过 interp1d()实现。
    其调用形式为:
    Interp1d可以计算x的取值范围之内任意点的函数值,并返回新的数组。
    interp1d(x, y, kind=‘linear’, …)
    参数 x和y是一系列已知的数据点
    参数kind是插值类型,可以是字符串或整数

    B样条曲线插值
    Kind给出了B样条曲线的阶数:
     ‘
    zero‘ ‘nearest’ :0阶梯插值,相当于0阶B样条曲线
     ‘slinear’‘linear’ :线性插值,相当于1阶B样条曲线
     ‘quadratic’‘cubic’:2阶和3阶B样条曲线,更高阶的曲线可以直接使用整数值来指定

    (1)#创建数据点集:

    import numpy as np

    x = np.linspace(0, 10, 11)

    y = np.sin(x)

     

    (2)#绘制数据点集:

    import pylab as pl

    pl.plot(x,y,'ro')

     

     

    创建interp1d对象f、计算插值结果:
    xnew = np.linspace(0, 10, 11)
    from scipy import interpolate
    f = interpolate.interp1d(x, y, kind = kind)
    ynew = f(xnew)

    根据kind类型创建interp1d对象f、计算并绘制插值结果:
    xnew = np.linspace(0, 10, 11)
    for kind in ['nearest', 'zero','linear','quadratic']:
    #根据kind创建插值对象interp1d
    f = interpolate.interp1d(x, y, kind = kind)
    ynew = f(xnew)#计算插值结果
    pl.plot(xnew, ynew, label = str(kind))#绘制插值结果

    如果我们将代码稍作修改增加一个5阶插值

    import numpy as np
    from scipy import interpolate
    import pylab as pl
    #创建数据点集并绘制
    pl.figure(figsize=(12,9))
    x = np.linspace(0, 10, 11)
    y = np.sin(x)
    ax=pl.plot()
    
    pl.plot(x,y,'ro')
    #建立插值数据点
    xnew = np.linspace(0, 10, 101)
    for kind in ['nearest', 'zero','linear','quadratic',5]:
        #根据kind创建插值对象interp1d
        f = interpolate.interp1d(x, y, kind = kind)
        ynew = f(xnew)#计算插值结果
        pl.plot(xnew, ynew, label = str(kind))
    
    pl.xticks(fontsize=20)
    pl.yticks(fontsize=20)
    
    pl.legend(loc = 'lower right')
    pl.show()
    运行得到
     

    发现5阶已经很接近正弦曲线,但是如果x值选取范围较大,则会出现跳跃。

    关于拟合与插值的数学基础可参见霍开拓:拟合与插值的区别?

    左边插值,右边拟合

  • 相关阅读:
    RabbitMQ消息队列 基本订阅/发布Demo(PHP版)
    Docker安装部署RabbitMQ
    CentOS Docker 基本操作
    new worker
    JavaScript避坑
    如何开启MySQL慢查询日志
    kinshard
    Linux shell
    Linux shell
    Linux shell
  • 原文地址:https://www.cnblogs.com/caiyishuai/p/11404849.html
Copyright © 2011-2022 走看看