zoukankan      html  css  js  c++  java
  • PAT 甲级 1147 Heaps (30 分) (层序遍历,如何建树,后序输出,还有更简单的方法~)

    1147 Heaps (30 分)
     

    In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_(data_structure))

    Your job is to tell if a given complete binary tree is a heap.

    Input Specification:

    Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 100), the number of trees to be tested; and N (1 < N ≤1,000), the number of keys in each tree, respectively. Then M lines follow, each contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.

    Output Specification:

    For each given tree, print in a line Max Heap if it is a max heap, or Min Heap for a min heap, or Not Heap if it is not a heap at all. Then in the next line print the tree's postorder traversal sequence. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line.

    Sample Input:

    3 8
    98 72 86 60 65 12 23 50
    8 38 25 58 52 82 70 60
    10 28 15 12 34 9 8 56
    

    Sample Output:

    Max Heap
    50 60 65 72 12 23 86 98
    Min Heap
    60 58 52 38 82 70 25 8
    Not Heap
    56 12 34 28 9 8 15 10

    题意:

    给一个树的层序遍历,判断它是不是堆,是大顶堆还是小顶堆。输出这个树的后序遍历~

    题解:

    在输入程序遍历的时候就借用队列建树,同时判断堆的类型,建好树以后递归进行后序遍历输出。

    方法暴力过于繁琐,下面有别人家的代码。。。

    本题思路虽然容易想,但是建树不太熟练,建树通常有两种方法:数组建树 和 链表建树,参见:建树的两种方法

    AC代码:

    #include<iostream>
    #include<algorithm>
    #include<queue>
    #include<stack>
    using namespace std;
    int m,n;
    struct node{
        int v;
        node *l,*r;
    };
    queue<node*>q;
    int sum=0;
    node* newnode(int x){//新建一个节点 
        node* newnode = new node;
        newnode->v=x;
        newnode->l=newnode->r=NULL;
        return newnode;
    }
    void postorder(node *&root){//后序遍历 
        if(root->l)    postorder(root->l);
        if(root->r) postorder(root->r);
        sum++;//用于计算是否要加空格 
        cout<<root->v;
        if(sum!=n) cout<<" ";
        else cout<<endl;
    }
    int main(){
        cin>>m>>n;
        int x;
        node *root;
        for(int i=1;i<=m;i++){
            int f=0;//从小到大为1 
            while(!q.empty()) q.pop();
            for(int j=1;j<=n;j++){
                cin>>x;
                if(j==1){
                    root= newnode(x);
                    q.push(root);
                    continue;
                }
                while(!q.empty()){//层序遍历用队列更方便 
                    node* a = q.front();
                    node* b = newnode(x);
                    if(a->l==NULL){
                        a->l=b;
                    }else if(a->r==NULL){
                        a->r=b;
                    }else{
                        q.pop();//如果队头的节点的左右节点装满了就把它扔了再从队头拿出 
                        continue;
                    }
                    q.push(b);
                    if(f==0 && a->v<x){//判读树的类型 
                        f=1;//从小到大为1 
                    }else if(f==0 && a->v>x){
                        f=2;//从大到小为2 
                    }else if(f==1 && a->v>x){
                        f=-1;//不符合条件为-1 
                    }else if(f==2 && a->v<x){
                        f=-1;
                    }
                    break;//记得要跳出 
                }
            }
            sum=0;
            if(f==1){
                cout<<"Min Heap"<<endl;        
            }else if(f==2){
                cout<<"Max Heap"<<endl;
            }else cout<<"Not Heap"<<endl;
            postorder(root);
        }
        return 0;
    } 

    更简单的不用建树的方法:

    柳诺大神的做法

    首先根据v[0]和v[1]的大小比较判断可能是大顶还是小顶,分别赋值flag为1和-1,先根据层序遍历,从0到n/2-1【所有有孩子的结点】判断他们的孩子是不是满足flag的要求,如果有一个结点不满足,那就将flag=0表示这不是一个堆。根据flag输出是否是堆,大顶堆还是小顶堆,然后后序遍历,根据index分别遍历index*2+1和index*2+2,即他们的左右孩子,遍历完左右子树后输出根结点,即完成了后序遍历~

    #include <iostream>
    #include <vector>
    using namespace std;
    int m, n;
    vector<int> v;
    void postOrder(int index) {
        if (index >= n) return;
        postOrder(index * 2 + 1);
        postOrder(index * 2 + 2);
        printf("%d%s", v[index], index == 0 ? "
    " : " ");
    }
    int main() {
        scanf("%d%d", &m, &n);
        v.resize(n);
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) scanf("%d", &v[j]);
            int flag = v[0] > v[1] ? 1 : -1;
            for (int j = 0; j < n / 2; j++) {
                int left = j * 2 + 1, right = j * 2 + 2;
                if (flag == 1 && (v[j] < v[left] || (right < n && v[j] < v[right]))) flag = 0;
                if (flag == -1 && (v[j] > v[left] || (right < n && v[j] > v[right]))) flag = 0;
            }
            if (flag == 0) printf("Not Heap
    ");
            else printf("%s Heap
    ", flag == 1 ? "Max" : "Min");
            postOrder(0);
        }
        return 0;
    }
  • 相关阅读:
    nginx配置跨域问题
    几个经典的TCP通信函数
    表达格式和数值格式的转换
    主机字节序与网络字节序的转换
    一对经典的时间获取客户/服务器程序
    关于TIME_WAIT状态
    一个经典的比喻( 关于TCP连接API )
    《UNIX 网络编程 第二版》编译环境的搭建( 运行本专栏代码必读 )
    简述C++中的多态机制
    最佳谓词函数 --- 函数对象
  • 原文地址:https://www.cnblogs.com/caiyishuai/p/11899079.html
Copyright © 2011-2022 走看看