zoukankan      html  css  js  c++  java
  • sklearn常见分类器(二分类模板)

    # -*- coding: utf-8 -*-
    import pandas as pd
    import matplotlib
    matplotlib.rcParams['font.sans-serif']=[u'simHei']
    matplotlib.rcParams['axes.unicode_minus']=False
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import classification_report
    from sklearn.pipeline import Pipeline
    from sklearn.model_selection import GridSearchCV
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.metrics import accuracy_score
    from sklearn.datasets import load_breast_cancer
    
    data_set = pd.read_csv('pima-indians-diabetes.csv')
    data = data_set.values[:,:]
    
    y = data[:,8]
    X = data[:,:8]
    X_train,X_test,y_train,y_test = train_test_split(X,y)
    
    ### 随机森林
    print("==========================================")   
    RF = RandomForestClassifier(n_estimators=10,random_state=11)
    RF.fit(X_train,y_train)
    predictions = RF.predict(X_test)
    print("RF")
    print(classification_report(y_test,predictions))
    print("AC",accuracy_score(y_test,predictions))
    
    
    ### Logistic Regression Classifier 
    print("==========================================")      
    from sklearn.linear_model import LogisticRegression
    clf = LogisticRegression(penalty='l2')
    clf.fit(X_train,y_train)
    predictions = clf.predict(X_test)
    print("LR")
    print(classification_report(y_test,predictions))
    print("AC",accuracy_score(y_test,predictions))
     
     
    ### Decision Tree Classifier    
    print("==========================================")   
    from sklearn import tree
    clf = tree.DecisionTreeClassifier()
    clf.fit(X_train,y_train)
    predictions = clf.predict(X_test)
    print("DT")
    print(classification_report(y_test,predictions))
    print("AC",accuracy_score(y_test,predictions))
    
     
    ### GBDT(Gradient Boosting Decision Tree) Classifier    
    print("==========================================")   
    from sklearn.ensemble import GradientBoostingClassifier
    clf = GradientBoostingClassifier(n_estimators=200)
    clf.fit(X_train,y_train)
    predictions = clf.predict(X_test)
    print("GBDT")
    print(classification_report(y_test,predictions))
    print("AC",accuracy_score(y_test,predictions))
    
     
    ###AdaBoost Classifier
    print("==========================================")   
    from sklearn.ensemble import  AdaBoostClassifier
    clf = AdaBoostClassifier()
    clf.fit(X_train,y_train)
    predictions = clf.predict(X_test)
    print("AdaBoost")
    print(classification_report(y_test,predictions))
    print("AC",accuracy_score(y_test,predictions))
    
     
    ### GaussianNB
    print("==========================================")   
    from sklearn.naive_bayes import GaussianNB
    clf = GaussianNB()
    clf.fit(X_train,y_train)
    predictions = clf.predict(X_test)
    print("GaussianNB")
    print(classification_report(y_test,predictions))
    print("AC",accuracy_score(y_test,predictions))
    
     
    ### Linear Discriminant Analysis
    print("==========================================")   
    from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
    clf = LinearDiscriminantAnalysis()
    clf.fit(X_train,y_train)
    predictions = clf.predict(X_test)
    print("Linear Discriminant Analysis")
    print(classification_report(y_test,predictions))
    print("AC",accuracy_score(y_test,predictions))
    
     
    ### Quadratic Discriminant Analysis
    print("==========================================")   
    from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
    clf = QuadraticDiscriminantAnalysis()
    clf.fit(X_train,y_train)
    predictions = clf.predict(X_test)
    print("Quadratic Discriminant Analysis")
    print(classification_report(y_test,predictions))
    print("AC",accuracy_score(y_test,predictions))
    
    
    ### SVM Classifier 
    print("==========================================")   
    from sklearn.svm import SVC
    clf = SVC(kernel='rbf', probability=True)
    clf.fit(X_train,y_train)
    predictions = clf.predict(X_test)
    print("SVM")
    print(classification_report(y_test,predictions))
    print("AC",accuracy_score(y_test,predictions))
    
    
    ### Multinomial Naive Bayes Classifier
    print("==========================================")       
    from sklearn.naive_bayes import MultinomialNB
    clf = MultinomialNB(alpha=0.01)
    clf.fit(X_train,y_train)
    predictions = clf.predict(X_test)
    print("Multinomial Naive Bayes")
    print(classification_report(y_test,predictions))
    print("AC",accuracy_score(y_test,predictions))
    
    
    ### xgboost
    import xgboost
    print("==========================================")       
    from sklearn.naive_bayes import MultinomialNB
    clf = xgboost.XGBClassifier()
    clf.fit(X_train,y_train)
    predictions = clf.predict(X_test)
    print("xgboost")
    print(classification_report(y_test,predictions))
    print("AC",accuracy_score(y_test,predictions))
    
    
    ### voting_classify
    from sklearn.ensemble import GradientBoostingClassifier, VotingClassifier, RandomForestClassifier
    import xgboost
    from sklearn.linear_model import LogisticRegression
    from sklearn.naive_bayes import GaussianNB
    clf1 = GradientBoostingClassifier(n_estimators=200)
    clf2 = RandomForestClassifier(random_state=0, n_estimators=500)
    # clf3 = LogisticRegression(random_state=1)
    # clf4 = GaussianNB()
    clf5 = xgboost.XGBClassifier()
    clf = VotingClassifier(estimators=[
        # ('gbdt',clf1),
        ('rf',clf2),
        # ('lr',clf3),
        # ('nb',clf4),
        # ('xgboost',clf5),
        ],
        voting='soft')
    clf.fit(X_train,y_train)
    predictions = clf.predict(X_test)
    print("voting_classify")
    print(classification_report(y_test,predictions))
    print("AC",accuracy_score(y_test,predictions))
  • 相关阅读:
    【转】【矩阵】坐标的矩阵变换
    cocos2d-x聊天气泡
    lua自用的函数收集
    lua错误收集
    cocos2d-x中CCEditbox导出到lua
    love2d杂记9--光照效果
    (转)love2d有用的辅助库--gamework
    XPath语法 在C#中使用XPath示例
    WCF的CommunicationObjectFaultedException异常问题
    WCF绑定(Binding)
  • 原文地址:https://www.cnblogs.com/caiyishuai/p/13270671.html
Copyright © 2011-2022 走看看