zoukankan      html  css  js  c++  java
  • HiveQL与SQL区别

    1、Hive不支持等值连接
    •SQL中对两表内联可以写成:
    •select * from dual a,dual b where a.key = b.key;
    •Hive中应为
    •select * from dual a join dual b on a.key = b.key;
    而不是传统的格式:
    SELECT t1.a1 as c1, t2.b1 as c2FROM t1, t2
    WHERE t1.a2 = t2.b2

    2、分号字符
    •分号是SQL语句结束标记,在HiveQL中也是,但是在HiveQL中,对分号的识别没有那么智慧,例如:
    •select concat(key,concat(';',key)) from dual;
    •但HiveQL在解析语句时提示:
    FAILED: Parse Error: line 0:-1 mismatched input '<EOF>' expecting ) in function specification
    •解决的办法是,使用分号的八进制的ASCII码进行转义,那么上述语句应写成:
    •select concat(key,concat('73',key)) from dual;

    3、IS [NOT] NULL
    •SQL中null代表空值, 值得警惕的是, 在HiveQL中String类型的字段若是空(empty)字符串, 即长度为0, 那么对它进行IS NULL的判断结果是False.

    4、Hive不支持将数据插入现有的表或分区中,
    仅支持覆盖重写整个表,示例如下:

    INSERT OVERWRITE TABLE t1
    SELECT * FROM t2;
    5、hive不支持INSERT INTO 表 Values(), UPDATE, DELETE操作
    这样的话,就不要很复杂的锁机制来读写数据。
    INSERT INTO syntax is only available starting in version 0.8。INSERT INTO就是在表或分区中追加数据。

    6、hive支持嵌入mapreduce程序,来处理复杂的逻辑,如:
    FROM (
    MAP doctext USING 'python wc_mapper.py' AS (word, cnt)
    FROM docs
    CLUSTER BY word
    ) a
    REDUCE word, cnt USING 'python wc_reduce.py';
    --doctext: 是输入
    --word, cnt: 是map程序的输出

    --CLUSTER BY: 将wordhash后,又作为reduce程序的输入

    并且map程序、reduce程序可以单独使用,如:
    FROM (
    FROM session_table
    SELECT sessionid, tstamp, data
    DISTRIBUTE BY sessionid SORT BY tstamp
    ) a
    REDUCE sessionid, tstamp, data USING 'session_reducer.sh';
    --DISTRIBUTE BY: 用于给reduce程序分配行数据
    7、hive支持将转换后的数据直接写入不同的表,还能写入分区、hdfs和本地目录
    这样能免除多次扫描输入表的开销。
    FROM t1
    INSERT OVERWRITE TABLE t2
    SELECT t3.c2, count(1)
    FROM t3
    WHERE t3.c1 <= 20
    GROUP BY t3.c2

    INSERT OVERWRITE DIRECTORY '/output_dir'
    SELECT t3.c2, avg(t3.c1)
    FROM t3
    WHERE t3.c1 > 20 AND t3.c1 <= 30
    GROUP BY t3.c2

    INSERT OVERWRITE LOCAL DIRECTORY '/home/dir'
    SELECT t3.c2, sum(t3.c1)
    FROM t3
    WHERE t3.c1 > 30
    GROUP BY t3.c2;
    实际实例

    创建一个表
    CREATE TABLE u_data (
    userid INT,
    movieid INT,
    rating INT,
    unixtime STRING)
    ROW FORMAT DELIMITED
    FIELDS TERMINATED BY '/t'
    STORED AS TEXTFILE;
    加载数据到表中:
    LOAD DATA LOCAL INPATH 'ml-data/u.data'
    OVERWRITE INTO TABLE u_data;

    统计数据总量:
    SELECT COUNT(1) FROM u_data;

    现在做一些复杂的数据分析:
    创建一个 weekday_mapper.py: 文件,作为数据按周进行分割
    import sys
    import datetime

    for line in sys.stdin:
    line = line.strip()
    userid, movieid, rating, unixtime = line.split('/t')

    生成数据的周信息
    weekday = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday()
    print '/t'.join([userid, movieid, rating, str(weekday)])

    使用映射脚本
    //创建表,按分割符分割行中的字段值
    CREATE TABLE u_data_new (
    userid INT,
    movieid INT,
    rating INT,
    weekday INT)
    ROW FORMAT DELIMITED
    FIELDS TERMINATED BY '/t';
    //将python文件加载到系统
    add FILE weekday_mapper.py;

    将数据按周进行分割
    INSERT OVERWRITE TABLE u_data_new
    SELECT
    TRANSFORM (userid, movieid, rating, unixtime)
    USING 'python weekday_mapper.py'
    AS (userid, movieid, rating, weekday)
    FROM u_data;

    SELECT weekday, COUNT(1)
    FROM u_data_new
    GROUP BY weekday;

    处理Apache Weblog 数据
    将WEB日志先用正则表达式进行组合,再按需要的条件进行组合输入到表中
    add jar ../build/contrib/hive_contrib.jar;

    CREATE TABLE apachelog (
    host STRING,
    identity STRING,
    user STRING,
    time STRING,
    request STRING,
    status STRING,
    size STRING,
    referer STRING,
    agent STRING)
    ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'
    WITH SERDEPROPERTIES (
    "input.regex" = "([^ ]*) ([^ ]*) ([^ ]*) (-|//[[^//]]*//]) ([^ /"]*|/"[^/"]*/") (-|[0-9]*) (-|[0-9]*)(?: ([^ /"]*|/"[^/"]*/") ([^ /"]*|/"[^/"]*/"))?",
    "output.format.string" = "%1$s %2$s %3$s %4$s %5$s %6$s %7$s %8$s %9$s"
    )
    STORED AS TEXTFILE;

  • 相关阅读:
    java 深入技术三(List)
    java 深入技术二(Collection)
    java开发JDBC连接数据库详解
    数据库基础和JDBC
    java 深入技术一
    java入门 第三季4
    java入门 第三季3
    04-1. 水仙花数(20)
    04-0. 求符合给定条件的整数集(15)
    03-4. 成绩转换(15)
  • 原文地址:https://www.cnblogs.com/camilla/p/8986469.html
Copyright © 2011-2022 走看看