zoukankan      html  css  js  c++  java
  • POJ1273Drainage Ditches[最大流]

    Drainage Ditches
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 71559   Accepted: 27846

    Description

    Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.
    Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.
    Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.

    Input

    The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

    Output

    For each case, output a single integer, the maximum rate at which water may emptied from the pond.

    Sample Input

    5 4
    1 2 40
    1 4 20
    2 4 20
    2 3 30
    3 4 10
    

    Sample Output

    50

    Source


    最大流裸题
    Dinic算法的基本思路:
    1. 根据残量网络计算层次图。
    2. 在层次图中使用DFS进行增广直到不存在增广路
    3. 重复以上步骤直到无法增广
    层次图
    阻塞流 不考虑反向边时的极大流 
     
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    using namespace std;
    const int N=205,M=205,INF=1e9;
    int read(){
        char c=getchar();int x=0,f=1;
        while(c<'0'||c>'9'){if(c=='-')f=-1; c=getchar();}
        while(c>='0'&&c<='9'){x=x*10+c-'0'; c=getchar();}
        return x*f;
    }
    int n,m,u,v,c;
    struct edge{
        int v,ne,f,c;
    }e[M<<1];
    int h[N],cnt=0;
    void ins(int u,int v,int c){
        cnt++;
        e[cnt].v=v;e[cnt].c=c;e[cnt].f=0;e[cnt].ne=h[u];h[u]=cnt;
        cnt++;
        e[cnt].v=u;e[cnt].c=0;e[cnt].f=0;e[cnt].ne=h[v];h[v]=cnt;
    }
    int cur[N],d[N],s,t;
    int vis[N],q[N],head=1,tail=1;
    
    int stop=0;
    bool bfs(){
        memset(vis,0,sizeof(vis));
        memset(d,0,sizeof(d));
        head=tail=1;
        q[tail++]=s;d[s]=0;vis[s]=1;
        while(head!=tail){
            int u=q[head++];
            for(int i=h[u];i;i=e[i].ne){
                int v=e[i].v;
                if(!vis[v]&&e[i].f<e[i].c){
                    q[tail++]=v;vis[v]=1;
                    d[v]=d[u]+1;  
                    if(v==t) return 1;
                }
            }
        }
        return 0;
    }
    
    
    int dfs(int u,int a){
        if(u==t||a==0) return a;
        int flow=0,f;
        for(int &i=cur[u];i;i=e[i].ne){
            int v=e[i].v;
            if(d[v]==d[u]+1&&(f=dfs(v,min(a,e[i].c-e[i].f)))>0){
                flow+=f;
                e[i].f+=f;
                e[((i-1)^1)+1].f-=f;
                a-=f;
                if(a==0) break;
            }
        }
        return flow;
    }
    int dinic(){
        int flow=0;
        while(bfs()){
            for(int i=s;i<=t;i++) cur[i]=h[i]; 
            flow+=dfs(s,INF);   
        }
        return flow;
    }
    int main(){
        while(scanf("%d%d",&m,&n)!=EOF){
            cnt=0;
            memset(h,0,sizeof(h));
            for(int i=1;i<=m;i++){
                u=read();v=read();c=read();
                ins(u,v,c);
            }
            s=1;t=n;
            printf("%d
    ",dinic());
        }
    }
     
  • 相关阅读:
    C++实现网络寻路
    java实现生日相同概率
    java实现生日相同概率
    Mysql 锁表 for update (引擎/事务)
    mysql(for update)悲观锁总结与实践
    Select For update语句浅析
    Mysql查询语句使用select.. for update导致的数据库死锁分析
    数据库中Select For update语句的解析
    【转载】支付宝运营架构中柔性事务指的是什么?
    互联网支付系统整体架构详解
  • 原文地址:https://www.cnblogs.com/candy99/p/6102779.html
Copyright © 2011-2022 走看看