zoukankan      html  css  js  c++  java
  • BZOJ 3527: [Zjoi2014]力 [快速傅里叶变换]

     

    给出n个数qi,给出Fj的定义如下:
    令Ei=Fi/qi,求Ei.
     

    找到一个很详细的题解:http://blog.csdn.net/qq_33929112/article/details/54590319
    
    花了两个小时来理解和写,1个小时查卡精度,又花了1个小时改模板卡洛谷的时限
    
    以后都从0开始
    
    观察这个式子
    
    E=C-D
    
    就是两个卷积啊....其中一个函数是1/i^2
    
    规定1/0^2=0后,i=j也可以包括进来了 然后前面那个是卷积标准形式,后面那个和上一题的技巧是一样的更改求和指标然后把q反转再反转D
    以前的推导

    [update 2017-03-30]

    新推♂倒了一下

    写出E的表达式,定义$frac{1}{0^2}=0$前半部分裸卷积,后半部分反转一个向量,又是裸卷积...

    注意:

    傻逼题卡精度1/i/i才行

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    typedef long long ll;
    const int N=(1<<18)+5, INF=1e9;
    const double PI=acos(-1);
    inline int read(){
        char c=getchar();int x=0,f=1;
        while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
        while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
        return x*f;
    }
    
    struct meow{
        double x, y;
        meow(double a=0, double b=0):x(a), y(b){}
    };
    meow operator +(meow a, meow b) {return meow(a.x+b.x, a.y+b.y);}
    meow operator -(meow a, meow b) {return meow(a.x-b.x, a.y-b.y);}
    meow operator *(meow a, meow b) {return meow(a.x*b.x-a.y*b.y, a.x*b.y+a.y*b.x);}
    meow conj(meow a) {return meow(a.x, -a.y);}
    typedef meow cd;
    
    struct FFT{
        int n, rev[N];
        void ini(int lim) {
            n=1; int k=0;
            while(n<lim) n<<=1, k++;
            for(int i=0; i<n; i++) {
                int t=0;
                for(int j=0; j<k; j++) if(i&(1<<j)) t |= (1<<(k-1-j));
                rev[i]=t;
            }
        }
        void dft(cd *a, int flag) {
            for(int i=0; i<n; i++) if(i<rev[i]) swap(a[i], a[rev[i]]);
            for(int l=2; l<=n; l<<=1) {
                int m=l>>1; 
                cd wn = meow(cos(2*PI/l), flag*sin(2*PI/l));
                for(cd *p=a; p!=a+n; p+=l) {
                    cd w(1, 0);
                    for(int k=0; k<m; k++) {
                        cd t = w*p[k+m];
                        p[k+m] = p[k] - t;
                        p[k] = p[k] + t;
                        w=w*wn;
                    }
                }
            }
            if(flag==-1) for(int i=0; i<n; i++) a[i].x/=n;
        }
    }fft;
    
    int n;
    cd a[N], b[N], c[N];
    int main() {
        freopen("in","r",stdin);
        n=read(); double x;
        for(int i=0; i<n; i++) scanf("%lf",&x), a[i].x=b[n-1-i].x=x;
        for(int i=1; i<n; i++) c[i].x=1.0/i/i;
        fft.ini(n+n-1);
        fft.dft(a, 1); fft.dft(b, 1); fft.dft(c, 1);
        for(int i=0; i<fft.n; i++) a[i]=a[i]*c[i], b[i]=b[i]*c[i];
        fft.dft(a, -1); fft.dft(b, -1);
        for(int i=0; i<n; i++) printf("%lf
    ", a[i].x-b[n-1-i].x);
    }
  • 相关阅读:
    android报表图形引擎(AChartEngine)demo解析与源码
    eclipse开发android程序常见问题解决办法
    android中监听layout布局
    android中LayoutInflater详解与使用
    WordPress标题函数wp_title()详解
    内网DMZ外网之间的访问规则
    ARTS打卡计划第一周-Share-系统字典模块的设计
    ARTS打卡计划第一周-Tips-ControllerAdvice的使用
    ARTS打卡计划第一周-Review
    ARTS打卡计划第一周-Algorithm
  • 原文地址:https://www.cnblogs.com/candy99/p/6389298.html
Copyright © 2011-2022 走看看