zoukankan      html  css  js  c++  java
  • 51NOD 1222 最小公倍数计数 [莫比乌斯反演 杜教筛]

    1222 最小公倍数计数

    题意:求有多少数对((a,b):a<b)满足(lcm(a,b) in [1, n])

    (n le 10^{11})


    卡内存!

    枚举(gcd, frac{a}{gcd}, frac{b}{gcd}),然后(mu)代入,就是

    [sum_{d=1}^{sqrt{n}}mu(d) sum_i sum_j sum_k [ijk le frac{n}{d^2}] ]

    问题就是怎么求后面的式子了

    一开始我是

    [f(n) = sum_i sum_j sum_k [ijk le n] = sum_{i=1}^n g(i) \ g(n) = sum_{i=1}^n sigma(i) ]

    杜教筛(g),方法是卷上(mu),当然还要杜教筛(summu),但不影响复杂度,还是(O(n^{frac{2}{3}}))

    本机6.5s,改小预处理的大小后当然T了


    然后又用分块的方法算(g),预处理前(O(n^{2/3}))(sigma)剩下的分块(O({sqrt{n}}))计算,复杂度也是(O(n^{frac{2}{3}}))

    本机4.6s,改小预处理大小又T了...


    最后还是用了tangjz的方法,统计(abc le n)的数对个数,规定(ale b le c),然后a枚举(n^{frac{1}{3}}),b枚举(sqrt{frac{n}{a}})。最后乘上(3!)再减去(a= b <c, a<b = c, a=b=c)

    这一部分的复杂度(T'(n)=O(sum_{i=1}^{n^frac{1}{3}}{sqrt{frac{n}{i}}})=O(n^frac{2}{3}))


    总体复杂度(T(n)=O(sum_{d=1}^{sqrt{n}}{T'(frac{n}{d^2})})=?O(n^frac{2}{3})​)

    求积分好像是(sqrt{n})啊,我也不知道这是怎么算的

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <ctime>
    using namespace std;
    typedef long long ll;
    const int N=320000;
    int U=316230;
    inline ll read(){
    	char c=getchar(); ll x=0,f=1;
    	while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
    	while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
    	return x*f;
    }
    
    bool notp[N]; int p[N], mu[N];
    void sieve(int n) {
    	mu[1]=1; 
    	for(int i=2; i<=n; i++) {
    		if(!notp[i]) p[++p[0]] = i, mu[i] = -1;
    		for(int j=1; j <= p[0] && i*p[j] <= n; j++) {
    			notp[ i*p[j] ] = 1;
    			if(i % p[j] == 0) {mu[ i*p[j] ] = 0; break;}
    			mu[ i*p[j] ] = -mu[i];
    		}
    	}
    }
    
    inline ll cal(ll n) {
    	ll ans=0;
    	for(ll i=1; i*i*i <= n; i++) {
    		for(ll j=i; i*j*j <= n; j++) {
    			ans += (n/i/j - j + 1) * 6;
    			if(i == j) ans -= (n/i/j - j) * 3;
    			if(i != j) ans -= 3;
    		}
    		ans -= 5;
    	}
    	return ans;
    }
    
    ll solve(ll n) {
    	ll ans=0;
    	int m = sqrt(n);
    	for(int i=1; i<=m; i++) if(mu[i]) ans += mu[i]>0 ? cal(n/i/i) : -cal(n/i/i);
    	return (ans + n) / 2;
    }
    int main() {
    	freopen("in", "r", stdin);
    	sieve(U);
    	ll l=read(), r=read();
    	printf("%lld", solve(r) - solve(l-1));
    	printf("
    
    %lf
    ",(double)clock()/CLOCKS_PER_SEC);
    }
    
    
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <map>
    #include <ctime>
    using namespace std;
    typedef long long ll;
    const int N=22000005;
    int U=22000000;
    inline ll read(){
    	char c=getchar(); ll x=0,f=1;
    	while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
    	while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
    	return x*f;
    }
    
    bool notp[N]; int p[N/10], mu[N], lp[N]; ll si[N];
    void sieve(int n) {
    	mu[1]=1; si[1]=1;
    	for(int i=2; i<=n; i++) {
    		if(!notp[i]) p[++p[0]] = i, mu[i] = -1, si[i] = lp[i] = 2;
    		for(int j=1; j <= p[0] && i*p[j] <= n; j++) {
    			int t = i*p[j];
    			notp[t] = 1;
    			if(i%p[j] == 0) {
    				mu[t] = 0;
    				lp[t] = lp[i] + 1;
    				si[t] = si[i] / lp[i] * lp[t];
    				break;
    			}
    			mu[t] = -mu[i];
    			lp[t] = 2;
    			si[t] = si[i] * 2;
    		}
    		mu[i] += mu[i-1];
    		si[i] += si[i-1];
    	}
    }
    
    namespace ha {
    	const int p = 1001001;
    	struct ha {
    		struct meow{int ne; ll val, r;} e[10000];
    		int cnt, h[p];
    		ha() {cnt=0; memset(h, 0, sizeof(h));}
    		inline void insert(ll x, ll val) {
    			int u = x%p;
    			for(int i=h[u];i;i=e[i].ne) if(e[i].r == x) return;
    			e[++cnt] = (meow){h[u], val, x}; h[u] = cnt;
    		}
    		inline ll quer(ll x) {
    			int u = x%p;
    			for(int i=h[u];i;i=e[i].ne) if(e[i].r == x) return e[i].val;
    			return -1;
    		}
    	} hs, hu, me; 
    } using ha::hs; using ha::hu; using ha::me;
    
    ll dj_u(ll n) { //return 1;
    	if(n <= U) return mu[n];
    	if(hu.quer(n) != -1) return hu.quer(n);
    	ll ans = 1, r;
    	for(ll i=2; i<=n; i=r+1) {
    		r = n/(n/i);
    		ans -= (r-i+1) * dj_u(n/i);
    	}
    	hu.insert(n, ans);
    	return ans;
    }
    
    ll dj_s(ll n) {
    	if(n <= U) return si[n];
    	if(hs.quer(n) != -1) return hs.quer(n);
    	dj_u(n);
    	ll ans = n, r, now, last = dj_u(1);
    	for(ll i=2; i<=n; i=r+1, last=now) {
    		r = n/(n/i); now = dj_u(r);
    		ans -= (now - last) * dj_s(n/i);
    	}
    	hs.insert(n, ans);
    	return ans;
    }
    ll cal(ll n) { 
    	ll ans=0, r;
    	for(ll i=1; i<=n; i=r+1) {
    		r = n/(n/i);
    		ans += (r-i+1) * dj_s(n/i);  
    	}
    	return ans;
    }
    ll solve(ll n) { 
    	ll ans=0;
    	int m = sqrt(n);
    	for(ll i=1; i<=m; i++) if(mu[i] - mu[i-1]) ans += (mu[i] - mu[i-1]) * cal(n / (i*i));
    	return (ans + n) / 2;
    }
    ll l, r;
    int main() {
    	freopen("in", "r", stdin);
    	sieve(U);
    	l=read(); r=read();
    	//printf("%lld", dj_u(r));
    	printf("%lld", solve(r) - solve(l-1));
    	printf("
    
    %lf
    ",(double)clock()/CLOCKS_PER_SEC);
    }
    
    
    
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <ctime>
    using namespace std;
    typedef long long ll;
    const int N=22000005;
    int U=22000000;
    inline ll read(){
    	char c=getchar(); ll x=0,f=1;
    	while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
    	while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
    	return x*f;
    }
    
    bool notp[N]; int p[N/10], mu[N], lp[N]; ll si[N];
    void sieve(int n) {
    	mu[1]=1; si[1]=1;
    	for(int i=2; i<=n; i++) {
    		if(!notp[i]) p[++p[0]] = i, mu[i] = -1, si[i] = lp[i] = 2;
    		for(int j=1; j <= p[0] && i*p[j] <= n; j++) {
    			int t = i*p[j];
    			notp[t] = 1;
    			if(i%p[j] == 0) {
    				mu[t] = 0;
    				lp[t] = lp[i] + 1;
    				si[t] = si[i] / lp[i] * lp[t];
    				break;
    			}
    			mu[t] = -mu[i];
    			lp[t] = 2;
    			si[t] = si[i] * 2;
    		}
    		//mu[i] += mu[i-1];
    		si[i] += si[i-1];
    	}
    }
    inline ll g(ll n) { if(n <= U) return si[n];
    	ll ans=0, r;
    	for(ll i=1; i<=n; i=r+1) {
    		r = n/(n/i);
    		ans += (r-i+1) * (n/i);
    	}
    	return ans;
    }
    ll cal(ll n) {
    	ll ans=0, r;
    	for(ll i=1; i<=n; i=r+1) {
    		r = n/(n/i);
    		ans += (r-i+1) * g(n/i); 
    	}
    	return ans;
    }
    
    ll solve(ll n) { 
    	ll ans = 0;
    	int m = sqrt(n);
    	for(ll i=1; i<=m; i++) 
    		if(mu[i]) ans += mu[i] * cal(n / (i*i));
    	return (ans + n) / 2;
    }
    
    ll l, r;
    int main() {
    	freopen("in", "r", stdin);
    	sieve(U);
    	l=read(); r=read();
    	printf("%lld", solve(r) - solve(l-1));
    	printf("
    
    %lf
    ",(double)clock()/CLOCKS_PER_SEC);
    }
    
  • 相关阅读:
    帮助应届生、年轻程序员快速成长的12个锦囊<转载>
    曾国藩教您:如何富过三代
    Mvc示例代码调试之二——调试示例讲解
    如何处理婚姻问题
    jQuery对象与dom对象相互转换
    Mvc示例代码调试之一----调试工具及设置(用firebug与vs联合调试)
    Mvc示例之三——用Filter进行简单身份验证
    沟通的艺术
    做bs开发需要学习哪些技术
    我所读过的技术书籍
  • 原文地址:https://www.cnblogs.com/candy99/p/6717868.html
Copyright © 2011-2022 走看看