zoukankan      html  css  js  c++  java
  • bzoj 2095: [Poi2010]Bridges [混合图欧拉回路]

    2095: [Poi2010]Bridges


    二分答案,混合图欧拉路判定


    一开始想了一个上下界网络流模型,然后发现不用上下界网络流也可以

    对于无向边,强制从(u ightarrow v),计算每个点入度出度

    两者差必须是偶数,令(x = frac{ind_i - outd_i}{2})

    每条无向边v向u连容量为1的边

    对于(x>0), s向i连容量x的边;

    (x<0), i向t连容量-x的边。

    这样一条原无向边满流 就是 与强制方向相反

    有解 当且仅当 s出边满流

    本题l不能初始化0,貌似有什么诡异的特殊数据...

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <set>
    #include <map>
    using namespace std;
    typedef long long ll;
    #define fir first
    #define sec second
    const int N = 2005, M = 1e4+5, inf = 1e9+5;
    inline int read() {
        char c=getchar(); int x=0,f=1;
        while(c<'0'||c>'9') {if(c=='-')f=-1;c=getchar();}
        while(c>='0'&&c<='9') {x=x*10+c-'0';c=getchar();}
        return x*f;
    }
    
    int n, m, s, t;
    struct meow {int u, v, c, d;} a[M];
    
    struct edge {int v, ne, c, f;} e[M];
    int cnt = 1, h[N];
    inline void ins(int u, int v, int c) { //printf("ins %d --> %d  %d
    ", u, v, c);
    	e[++cnt] = (edge) {v, h[u], c, 0}; h[u] = cnt;
    	e[++cnt] = (edge) {u, h[v], 0, 0}; h[v] = cnt;
    }
    int d[N], q[N], head, tail, vis[N];
    bool bfs() {
    	memset(vis, 0, sizeof(vis));
    	head = tail = 1;
    	d[s] = 0; q[tail++] = s; vis[s] = 1;
    	while(head != tail) {
    		int u = q[head++];
    		for(int i=h[u]; i; i=e[i].ne) 
    			if(e[i].c > e[i].f && !vis[e[i].v]) {
    				int v = e[i].v;
    				vis[v] = 1;
    				d[v] = d[u]+1;
    				q[tail++] = v;
    				if(v == t) return true;
    			}
    	}
    	return false;
    }
    int cur[N];
    int dfs(int u, int a) {
    	if(u == t || a == 0) return a;
    	int flow = 0, f;
    	for(int &i=cur[u]; i; i=e[i].ne) {
    		int v = e[i].v;
    		if(d[v] == d[u]+1 && (f = dfs(v, min(a, e[i].c - e[i].f))) > 0) {
    			flow += f;
    			e[i].f += f;
    			e[i^1].f -= f;
    			a -= f;
    			if(a == 0) break;
    		}
    	}
    	if(a) d[u] = -1;
    	return flow;
    }
    int dinic() {
    	int flow = 0;
    	while(bfs()) {
    		for(int i=s; i<=t; i++) cur[i] = h[i];
    		flow += dfs(s, inf);
    	}
    	return flow;
    }
    
    int ind[N], outd[N];
    bool check(int mid) { //printf("check %d
    ", mid);
    	cnt = 1; memset(h, 0, sizeof(h));
    	s = 0; t = n+1;
    	memset(ind, 0, sizeof(ind)); 
    	memset(outd, 0, sizeof(outd));
    	for(int i=1; i<=m; i++) {
    		int u = a[i].u, v = a[i].v;
    		if(a[i].c <= mid && a[i].d <= mid) {
    			outd[u]++, ind[v]++;
    			ins(v, u, 1);
    		} else if(a[i].c <= mid) outd[u]++, ind[v]++;
    		else if(a[i].d <= mid) outd[v]++, ind[u]++;
    	}
    	int sum = 0;
    	for(int i=1; i<=n; i++) {
    		int x = abs(ind[i] - outd[i]); //printf("x %d  %d
    ", i, x);
    		if(x & 1) return false;
    		x >>= 1;
    		if(ind[i] > outd[i]) ins(s, i, x), sum += x;
    		else if(ind[i] < outd[i]) ins(i, t, x);
    	}
    	return dinic() == sum;
    }
    int main() {
    	freopen("in.in", "r", stdin);
    	n = read(); m = read();
    	int l = inf, r = 0, ans = -1;
    	for(int i=1; i<=m; i++) {
    		a[i].u = read(), a[i].v = read(), a[i].c = read(), a[i].d = read();
    		l = min(l, min(a[i].c, a[i].d));
    		r = max(r, max(a[i].c, a[i].d));
    	}
    	
    	//printf("%d
    ", check(4)); return 0;
    	while(l <= r) {
    		int mid = (l+r) >> 1; //printf("lrmid %d %d %d
    ", l, r, mid);
    		if(check(mid)) ans = mid, r = mid-1;
    		else l = mid+1;
    	}
    	if(ans == -1) puts("NIE");
    	else printf("%d
    ", ans);
    }
    
  • 相关阅读:
    初始面向对象
    python之路——迭代器和生成器
    函数进阶
    python之路——初识函数
    实现css两端对齐
    http
    background-size
    call和apply的区别
    js兼容性
    面试题
  • 原文地址:https://www.cnblogs.com/candy99/p/6858617.html
Copyright © 2011-2022 走看看