zoukankan      html  css  js  c++  java
  • Colidity--PassingCars

     1 // you can use includes, for example:
     2 // #include <algorithm>
     3 
     4 // you can write to stdout for debugging purposes, e.g.
     5 // cout << "this is a debug message" << endl;
     6 
     7 int solution(vector<int> &A) {
     8     // write your code in C++11
     9     int i = A.size()-1;
    10     int tmp = 0;
    11     int res = 0;
    12     while(i >= 0)
    13     {
    14         if(A[i] == 0)
    15         {
    16             res += tmp;
    17         }
    18         else
    19         {
    20             tmp++;
    21         }
    22         --i;
    23     }
    24     return res;
    25 }

    思路:统计0后面的1的个数,利用后缀数组计算

    A non-empty zero-indexed array A consisting of N integers is given. The consecutive elements of array A represent consecutive cars on a road.

    Array A contains only 0s and/or 1s:

    • 0 represents a car traveling east,
    • 1 represents a car traveling west.

    The goal is to count passing cars. We say that a pair of cars (P, Q), where 0 ≤ P < Q < N, is passing when P is traveling to the east and Q is traveling to the west.

    For example, consider array A such that:

      A[0] = 0
      A[1] = 1
      A[2] = 0
      A[3] = 1
      A[4] = 1

    We have five pairs of passing cars: (0, 1), (0, 3), (0, 4), (2, 3), (2, 4).

    Write a function:

    int solution(vector<int> &A);

    that, given a non-empty zero-indexed array A of N integers, returns the number of passing cars.

    The function should return −1 if the number of passing cars exceeds 1,000,000,000.

    For example, given:

      A[0] = 0
      A[1] = 1
      A[2] = 0
      A[3] = 1
      A[4] = 1

    the function should return 5, as explained above.

    Assume that:

    • N is an integer within the range [1..100,000];
    • each element of array A is an integer that can have one of the following values: 0, 1.

    Complexity:

    • expected worst-case time complexity is O(N);
    • expected worst-case space complexity is O(1), beyond input storage (not counting the storage required for input arguments).
  • 相关阅读:
    浅谈左偏树入门
    【洛谷3768】简单的数学题(莫比乌斯反演+杜教筛)
    【51nod1743】雪之国度(最小生成树+倍增)
    【BZOJ1562】[NOI2009] 变换序列(匈牙利算法)
    【HHHOJ】NOIP模拟赛 玖 解题报告
    【BZOJ3930】[CQOI2015] 选数(容斥)
    【BZOJ1257】[CQOI2007] 余数之和(除法分块)
    杜教筛入门
    初学狄利克雷卷积
    关于积性函数的一些知识
  • 原文地址:https://www.cnblogs.com/cane/p/3973651.html
Copyright © 2011-2022 走看看