zoukankan      html  css  js  c++  java
  • 使用GPU.js改善JavaScript性能

    你是否曾经尝试过运行复杂的计算,却发现它需要花费很长时间,并且拖慢了你的进程?

    有很多方法可以解决这个问题,例如使用 web worker 或后台线程。GPU 减轻了 CPU 的处理负荷,给了 CPU 更多的空间来处理其他进程。同时,web worker 仍然运行在 CPU 上,但是运行在不同的线程上。

    在该初学者指南中,我们将演示如何使用GPU.js执行复杂的数学计算并提高 JavaScript 应用的性能。

    什么是 GPU.js?

    GPU.js 是一个针对 Web 和 Node.js 构建的 JavaScript 加速库,用于在图形处理单元(GPGPU)上进行通用编程,它使你可以将复杂且耗时的计算移交给 GPU 而不是 CPU,以实现更快的计算和操作。还有一个备用选项:在系统上没有 GPU 的情况下,这些功能仍将在常规 JavaScript 引擎上运行。

    当你要执行复杂的计算时,实质上是将这种负担转移给系统的 GPU 而不是 CPU,从而增加了处理速度和时间。

    高性能计算是使用 GPU.js 的主要优势之一。如果你想在浏览器中进行并行计算,而不了解 WebGL,那么 GPU.js 是一个适合你的库。

    为什么要使用 GPU.js

    为什么要使用 GPU 执行复杂的计算的原因不胜枚举,有太多的原因无法在一篇文章中探讨。以下是使用 GPU 的一些最值得注意的好处。

    • GPU 可用于执行大规模并行 GPGPU 计算。这是需要异步完成的计算类型
    • 当系统中没有 GPU 时,它会优雅地退回到 JavaScript
    • GPU 当前在浏览器和 Node.js 上运行,非常适合通过大量计算来加速网站
    • GPU.js 是在考虑 JavaScript 的情况下构建的,因此这些功能均使用合法的 JavaScript 语法

    如果你认为你的处理器可以胜任,你不需要 GPU.js,看看下面这个 GPU 和 CPU 运行计算的结果。

    如你所见,GPU 比 CPU 快 22.97 倍。

    GPU.js 的工作方式

    考虑到这种速度水平,JavaScript 生态系统仿佛得到了一个可以乘坐的火箭。GPU 可以帮助网站更快地加载,特别是必须在首页上执行复杂计算的网站。你不再需要担心使用后台线程和加载器,因为 GPU 运行计算的速度是普通 CPU 的 22.97 倍。

    gpu.createKernel 方法创建了一个从 JavaScript 函数移植过来的 GPU 加速内核。

    与 GPU 并行运行内核函数会导致更快的计算速度——快 1-15 倍,这取决于你的硬件。

    GPU.js 入门

    为了展示如何使用 GPU.js 更快地计算复杂的计算,让我们快速启动一个实际的演示。

    安装

    sudo apt install mesa-common-dev libxi-dev  // using Linux
    npm install gpu.js --save
    // OR
    yarn add gpu.js

    在你的 Node 项目中要导入 GPU.js。

     
    import { GPU } from ('gpu.js')
    
    // OR
    const { GPU } = require('gpu.js')
    
    const gpu = new GPU();

    乘法演示

    在下面的示例中,计算是在 GPU 上并行完成的。

    首先,生成大量数据。

     
    const getArrayValues = () => {
    
      // 在此处创建2D arrary
      const values = [[], []]
    
      // 将值插入第一个数组
      for (let y = 0; y < 600; y++){
        values[0].push([])
        values[1].push([])
    
        // 将值插入第二个数组
        for (let x = 0; x < 600; x++){
          values[0][y].push(Math.random())
          values[1][y].push(Math.random())
        }
      }
    
      // 返回填充数组
      return values
    }

    创建内核(运行在 GPU 上的函数的另一个词)。

     
    const gpu = new GPU();
    
    // 使用 `createKernel()` 方法将数组相乘
    const multiplyLargeValues = gpu
      .createKernel(function(a, b) {
        let sum = 0;
        for (let i = 0; i < 600; i++) {
          sum +=
            a[this.thread.y][
              i
            ] *
            b[i][this.thread.x];
        }
        return sum;
      })
      .setOutput([600, 600]);

    使用矩阵作为参数调用内核。

     
    const largeArray = getArrayValues();
    const out = multiplyLargeValues(
      largeArray[0],
      largeArray[1]
    );

    输出

    console.log(out[y][x]) // 将元素记录在数组的第x行和第y列
    console.log(out[10][12]) // 记录输出数组第10行和第12列的元素

    运行 GPU 基准测试

    你可以按照GitHub上指定的步骤运行基准测试。

     
    npm install @gpujs/benchmark
    
    const benchmark = require('@gpujs/benchmark')
    
    const benchmarks = benchmark.benchmark(options);

    options 对象包含可以传递给基准的各种配置。

    前往 GPU.js 官方网站查看完整的计算基准,这将帮助你了解使用 GPU.js 进行复杂计算可以获得多少速度。

    结束

    在本教程中,我们详细探讨了 GPU.js,分析了它的工作原理,并演示了如何进行并行计算。我们还演示了如何在你的 Node.js 应用中设置 GPU.js。

    文章作者: 张张
    文章链接: https://blog.zhangbing.site/2020/11/30/improving-javascript-performance-with-gpu-js/

    喜欢这篇文章?欢迎打赏~~

  • 相关阅读:
    Linux学习——在虚拟机上的Linux进行磁盘分区
    Linux命令学习3——用户管理
    linux 命令学习2
    linux 命令学习1——tr命令
    基于netty的一个简单的时间服务器的实现(netty学习)
    JavaNIO
    JavaNIO中的内存映射io
    打造高效的工作环境 – SHELL 篇
    linux下怎么清理缓存
    清理系统缓存
  • 原文地址:https://www.cnblogs.com/cangqinglang/p/14180621.html
Copyright © 2011-2022 走看看