zoukankan      html  css  js  c++  java
  • 排序算法与数据结构复习总结

    查找

    Arrays工具类中二分查找
    private static int binarySearch0(int[] a, int fromIndex, int toIndex,
                                     int key) {
        int low = fromIndex;
        int high = toIndex - 1;
    
        while (low <= high) {
            int mid = (low + high) >>> 1;
            int midVal = a[mid];
    
            if (midVal < key)
                low = mid + 1;
            else if (midVal > key)
                high = mid - 1;
            else
                return mid; // key found
        }
        return -(low + 1);  // key not found.
    }
    

    时间复杂度

    排序

    冒泡排序
    public static void bubbleSort(int arr[]) {
        for(int i =0 ; i<arr.length-1 ; i++) { 
            for(int j=0 ; j<arr.length-1-i ; j++) {  
                if(arr[j]>arr[j+1]) {
                    int temp = arr[j];
                    arr[j]=arr[j+1];
                    arr[j+1]=temp;
                }
            }    
        }
    }
    
    选择排序
    public static void selectionSort(int[] arr){
        //需要比较的次数,数组长度减一
        for(int i = 0; i < arr.length - 1; i++){
            //先假设每次循环时,最小数的索引为i
            int minIndex = i;
            //每一个元素都和剩下的未排序的元素比较
            for(int j = i + 1; j < arr.length; j++){
                if(arr[j] < arr[minIndex]){//寻找最小数
                    minIndex = j;//将最小数的索引保存
                }
            }
            //经过一轮循环,就可以找出第一个最小值的索引,然后把最小值放到i的位置
            swap(arr, i, minIndex);
        }
    }
    
    private static void swap(int[] arr, int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
    
    插入排序
    public class Insertion {
        public static void sort(Comparable[] a) {
            //将a[]按升序排列
            int N=a.length;
            for (int i=1;i<N;i++) {
            //将a[i]插入到a[i-1],a[i-2],a[i-3]……之中
                for(int j=i; j>0 && (a[j].compareTo(a[j-1])<0);j--) {
                    Comparable temp=a[j];
                    a[j]=a[j-1];
                    a[j-1]=temp;
                }
            }
        }
    }
    
    希尔排序
    public void shellSort() {
        int gap = array.length;
        while (true) {    
            gap /= 2;   //增量每次减半    
            for (int i = 0; i < gap; i++) {        
                for (int j = i + gap; j < array.length; j += gap) {
                //这个循环里其实就是一个插入排序            int k = j - gap;            
                    while (k >= 0 && array[k] > array[k+gap]) {
                        int temp = array[k];
                        array[k] = array[k+gap];
                        array[k + gap] = temp;     
                        k -= gap;            
                    }                
                }    
            }    
            if (gap == 1)        
                break;
        }
    }
    
    归并排序
    public static int[] mergeSort(int[] nums, int l, int h) {
        if (l == h)
            return new int[] { nums[l] };
         
        int mid = l + (h - l) / 2;
        int[] leftArr = mergeSort(nums, l, mid); //左有序数组
        int[] rightArr = mergeSort(nums, mid + 1, h); //右有序数组
        int[] newNum = new int[leftArr.length + rightArr.length]; //新有序数组
         
        int m = 0, i = 0, j = 0; 
        while (i < leftArr.length && j < rightArr.length) {
            newNum[m++] = leftArr[i] < rightArr[j] ? leftArr[i++] : rightArr[j++];
        }
        while (i < leftArr.length)
            newNum[m++] = leftArr[i++];
        while (j < rightArr.length)
            newNum[m++] = rightArr[j++];
        return newNum;
    }
    
    快速排序
    public static int[] qsort(int arr[],int start,int end) {        
        int pivot = arr[start];        
        int i = start;        
        int j = end;        
        while (i<j) {            
            while ((i<j)&&(arr[j]>pivot)) {            
                j--;            
            }            
            while ((i<j)&&(arr[i]<pivot)) {         
                i++;            
            }            
            if ((arr[i]==arr[j])&&(i<j)) {             
                i++;            
            } else {                
                int temp = arr[i];                
                arr[i] = arr[j];                
                arr[j] = temp;            
            }        
        }        
        if (i-1>start) arr=qsort(arr,start,i-1);       
        if (j+1<end) arr=qsort(arr,j+1,end);        
        return (arr);    
    }    
     
    public static void main(String[] args) {        
        int arr[] = new int[]{3,3,3,7,9,122344,4656,34,34,4656,5,6,7,8,9,343,57765,23,12321};        
        int len = arr.length-1;        
        arr=qsort(arr,0,len);        
        for (int i:arr) {            
            System.out.print(i+"	");        
        }    
    }
    

    方式2

    public <TextendsComparable<?superT>>
    T[] quickSort(T[] targetArr,int start,int end)
    {
        int i=start+1 , j=end;
        T key = targetArr[start];
        SortUtil<T> sUtil=new SortUtil<T>();
     
        if(start==end) return (targetArr);
     
     
        /** 
         *  从i++和j--两个方向搜索不满足条件的值并交换
         *  条件为:i++方向小于key,j--方向大于key
         */
        while(true) {
            while(targetArr[j].compareTo(key) > 0) j--;
            while(targetArr[i].compareTo(key) < 0 && i<j) i++;
            if(i>=j) break;
            sUtil.swap(targetArr,i,j);
            if(targetArr[i]==key) {
                j--;
            } else {
                i++;
            }
        }
     
        /*关键数据放到‘中间’*/
        sUtil.swap(targetArr,start,j);
        if(start<i-1) {
            this.quickSort(targetArr,start,i-1);
        }
        if(j+1<end) {
            this.quickSort(targetArr,j+1,end);
        }
        returntargetArr;
    }
    

    方式3

    private<TextendsComparable<?superT>>
    voidquickSort(T[]targetArr,intstart,intend) {
        inti=start,j=end;
        T key=targetArr[start];
     
        while(i<j) {
            /*按j--方向遍历目标数组,直到比key小的值为止*/
            while(j>i&&targetArr[j].compareTo(key)>=0){
                j--;
            }
            if(i<j) {
                /*targetArr[i]已经保存在key中,可将后面的数填入*/
                targetArr[i]=targetArr[j];
                i++;
            }
            /*按i++方向遍历目标数组,直到比key大的值为止*/
            while(i<j&&targetArr[i].compareTo(key)<=0)
            /*此处一定要小于等于零,假设数组之内有一亿个1,0交替出现的话,而key的值又恰巧是1的话,那么这个小于等于的作用就会使下面的if语句少执行一亿次。*/
            {
                i++;
            }
            if(i<j) {
                /*targetArr[j]已保存在targetArr[i]中,可将前面的值填入*/
                targetArr[j]=targetArr[i];
                j--;
            }
        }
        /*此时i==j*/
        targetArr[i]=key;//应加判断
     
        /*递归调用,把key前面的完成排序*/
        this.quickSort(targetArr,start,i-1);
     
        /*递归调用,把key后面的完成排序*/
        this.quickSort(targetArr,j+1,end);
        //两个递归应加判断
    }
    
    
    堆排序
        /**
        * 选择排序-堆排序
        * @param array 待排序数组
        * @return 已排序数组
        */
        public static int[] heapSort(int[] array) {
            //这里元素的索引是从0开始的,所以最后一个非叶子结点array.length/2 - 1
            for (int i = array.length / 2 - 1; i >= 0; i--) {  
                adjustHeap(array, i, array.length);  //调整堆
            }
      
            // 上述逻辑,建堆结束
            // 下面,开始排序逻辑
            for (int j = array.length - 1; j > 0; j--) {
                // 元素交换,作用是去掉大顶堆
                // 把大顶堆的根元素,放到数组的最后;换句话说,就是每一次的堆调整之后,都会有一个元素到达自己的最终位置
                swap(array, 0, j);
                // 元素交换之后,毫无疑问,最后一个元素无需再考虑排序问题了。
                // 接下来我们需要排序的,就是已经去掉了部分元素的堆了,这也是为什么此方法放在循环里的原因
                // 而这里,实质上是自上而下,自左向右进行调整的
                adjustHeap(array, 0, j);
            }
            return array;
        }
      
        /**
        * 整个堆排序最关键的地方
        * @param array 待组堆
        * @param i 起始结点
        * @param length 堆的长度
        */
        public static void adjustHeap(int[] array, int i, int length) {
            // 先把当前元素取出来,因为当前元素可能要一直移动
            int temp = array[i];
            for (int k = 2 * i + 1; k < length; k = 2 * k + 1) {  //2*i+1为左子树i的左子树(因为i是从0开始的),2*k+1为k的左子树
                // 让k先指向子节点中最大的节点
                if (k + 1 < length && array[k] < array[k + 1]) {  //如果有右子树,并且右子树大于左子树
                    k++;
                }
                //如果发现结点(左右子结点)大于根结点,则进行值的交换
                if (array[k] > temp) {
                    swap(array, i, k);
                    // 如果子节点更换了,那么,以子节点为根的子树会受到影响,所以,循环对子节点所在的树继续进行判断
                        i  =  k;
                            } else {  //不用交换,直接终止循环
                    break;
                }
            }
        }
      
        /**
        * 交换元素
        * @param arr
        * @param a 元素的下标
        * @param b 元素的下标
        */
        public static void swap(int[] arr, int a, int b) {
            int temp = arr[a];
            arr[a] = arr[b];
            arr[b] = temp;
        }
    
    计数排序
    //针对c数组的大小,优化过的计数排序
    publicclassCountSort{
        publicstaticvoidmain(String[]args){
          //排序的数组
            int a[]={100,93,97,92,96,99,92,89,93,97,90,94,92,95};
            int b[]=countSort(a);
            for(inti:b){
               System.out.print(i+"");
            }
            System.out.println();
        }
        public static int[] countSort(int[]a){
            int b[] = new int[a.length];
            int max = a[0],min = a[0];
            for(int i:a){
                if(i>max){
                    max=i;
                }
                if(i<min){
                    min=i;
                }
            }//这里k的大小是要排序的数组中,元素大小的极值差+1
            int k=max-min+1;
            int c[]=new int[k];
            for(int i=0;i<a.length;++i){
                c[a[i]-min]+=1;//优化过的地方,减小了数组c的大小
            }
            for(int i=1;i<c.length;++i){
                c[i]=c[i]+c[i-1];
            }
            for(int i=a.length-1;i>=0;--i){
                b[--c[a[i]-min]]=a[i];//按存取的方式取出c的元素
            }
        return b;
        }
    }
    
    桶排序
    public static void basket(int data[]) {
        int n=data.length;
        int bask[][]=new int[10][n];
        int index[]=new int[10];
        int max=Integer.MIN_VALUE;
        for(int i=0;i<n;i++){
            max=max>(Integer.toString(data[i]).length())?max:(Integer.toString(data[i]).length());
        }
        String str;
        for(int i=max-1;i>=0;i--) {
            for(int j=0;j<n;j++){
                str="";
                if(Integer.toString(data[j]).length()<max) {
                for(int k=0;k<max-Integer.toString(data[j]).length();k++){
                    str+="0";
                }
                str+=Integer.toString(data[j]);
                bask[str.charAt(i)-'0'][index[str.charAt(i)-'0']++]=data[j];
            }
            int pos=0;
            for(int j=0;j<10;j++) {
                for(int k=0;k<index[j];k++) {
                    data[pos++]=bask[j][k];
                }
            }
            for(intx=0;x<10;x++) index[x]=0;
        }
    }
    
    
    基数排序
    public class RadixSort
    {
        public static void sort(int[] number, int d) //d表示最大的数有多少位
        {
            intk = 0;
            intn = 1;
            intm = 1; //控制键值排序依据在哪一位
            int[][]temp = newint[10][number.length]; //数组的第一维表示可能的余数0-9
            int[]order = newint[10]; //数组order[i]用来表示该位是i的数的个数
            while(m <= d)
            {
                for(inti = 0; i < number.length; i++)
                {
                    intlsd = ((number[i] / n) % 10);
                    temp[lsd][order[lsd]] = number[i];
                    order[lsd]++;
                }
                for(inti = 0; i < 10; i++)
                {
                    if(order[i] != 0)
                        for(intj = 0; j < order[i]; j++)
                        {
                            number[k] = temp[i][j];
                            k++;
                        }
                    order[i] = 0;
                }
                n *= 10;
                k = 0;
                m++;
            }
        }
        public static void main(String[] args)
        {
            int[]data =
            {73, 22, 93, 43, 55, 14, 28, 65, 39, 81, 33, 100};
            RadixSort.sort(data, 3);
            for(inti = 0; i < data.length; i++)
            {
                System.out.print(data[i] + "");
            }
        }
    }
    
    
    JDK DualPivotQuicksort双基准快速排序
    时间复杂度

    https://www.cnblogs.com/onepixel/articles/7674659.html

    数据结构

    栈的实现

    链式实现
    public class LinkedStack<E> {
        private Node<E> topNode;
    
        public LinkedStack() {
            topNode = null;
        }
    
        public void push(E e) {
            Node<E> newNode = new Node<>(e, topNode);
            topNode = newNode;
        }
    
        public E peek() {
            // isEmpty()
            return topNode.item;
        }
    
        public E pop() {
            E top = peek();
            //topNode != null
            topNode = topNode.next;
            return top;
        }
    
        private class Node<E> {
            private E item;
            private Node<E> next;
    
            Node(E item, Node<E> topNode) {
                this.item = item;
                next = topNode;
            }
        }
    }
    
    数组实现
    public class ArrayStack<E> {
        private E[] stack;
        private int topIndex;
        private boolean initialized = false;
        private static final int DEFAULT_CAPACITY = 50;
        private static final int MAX_CAPACITY = 1000;
        
        public ArrayStack() {
            this(DEFAULT_CAPACITY);
        }
        
        public ArrayStack(int initCapacity) {
            //checkCapacity(initCapacity);
            E [] tempStack = (E[])new Object[initCapacity];
            stack = tempStack;
            topIndex = -1;
            initialized = true;
        }
        
        public void push(E item) {
            // checkInitialization()
            ensureCapacity();
            stack[topIndex + 1] = item;
            topIndex++;
        }
        
        private void ensureCapacity() {
            if(topIndex == stack.length - 1) {
                int newLength = 2 * stack.length;
                //checkCapacity(newLength)
                stack = Arrays.copyOf(stack, newLength);
            }
        }
        
        public E peek() {
            // checkInitialization()
            // isEmpty
            return stack[topIndex];
        }
        
        public E pop() {
            // checkInitialization()
            // isEmpty
            E top = stack[topIndex];
            stack[topIndex] = null;
            topIndex--;
            return pop();
        }
    }
    
    JDK继承vector实现的Stack源码
    public
    class Stack<E> extends Vector<E> {
        public Stack() {
        }
    
        public E push(E item) {
            addElement(item);
    
            return item;
        }
    
        public synchronized E pop() {
            E       obj;
            int     len = size();
    
            obj = peek();
            removeElementAt(len - 1);
    
            return obj;
        }
    
        public synchronized E peek() {
            int     len = size();
    
            if (len == 0)
                throw new EmptyStackException();
            return elementAt(len - 1);
        }
    
        public boolean empty() {
            return size() == 0;
        }
    
        public synchronized int search(Object o) {
            int i = lastIndexOf(o);
    
            if (i >= 0) {
                return size() - i;
            }
            return -1;
        }
    
    
        private static final long serialVersionUID = 1224463164541339165L;
    }
    

    队列实现

    链式队列实现
    public class LinkedList<E>
        extends AbstractSequentialList<E>
        implements List<E>, Deque<E>, Cloneable, java.io.Serializable
    {
        transient Node<E> first;
        transient Node<E> last;
        public LinkedList() {}
        
        private void linkFirst(E e) {
            final Node<E> f = first;
            final Node<E> newNode = new Node<>(null, e, f);
            first = newNode;
            if (f == null)
                last = newNode;
            else
                f.prev = newNode;
            size++;
            modCount++;
        }
        
        private E unlinkFirst(Node<E> f) {
            // assert f == first && f != null;
            final E element = f.item;
            final Node<E> next = f.next;
            f.item = null;
            f.next = null; // help GC
            first = next;
            if (next == null)
                last = null;
            else
                next.prev = null;
            size--;
            modCount++;
            return element;
        }
        
        void linkLast(E e) {
            final Node<E> l = last;
            final Node<E> newNode = new Node<>(l, e, null);
            last = newNode;
            if (l == null)
                first = newNode;
            else
                l.next = newNode;
            size++;
            modCount++;
        }
        
        private static class Node<E> {
            E item;
            Node<E> next;
            Node<E> prev;
    
            Node(Node<E> prev, E element, Node<E> next) {
                this.item = element;
                this.next = next;
                this.prev = prev;
            }
        }
        
        public boolean offer(E e) {
            return add(e);
        }
        
        public boolean add(E e) {
            linkLast(e);
            return true;
        }
        
        public E peek() {
            final Node<E> f = first;
            return (f == null) ? null : f.item;
        }
        
        public E poll() {
            final Node<E> f = first;
            return (f == null) ? null : unlinkFirst(f);
        }
    
    数组队列实现
    public class ArrayDeque<E> extends AbstractCollection<E>
                               implements Deque<E>, Cloneable, Serializable
    {
        transient int head;
        transient int tail;
        
        public ArrayDeque() {
            elements = new Object[16];
        }
        
        public boolean offer(E e) {
            return offerLast(e);
        }
        
        public E poll() {
            return pollFirst();
        }
        
        public E peek() {
            return peekFirst();
        }
    
        public boolean offerLast(E e) {
            addLast(e);
            return true;
        }
        
        public void addLast(E e) {
            if (e == null)
                throw new NullPointerException();
            elements[tail] = e;
            if ( (tail = (tail + 1) & (elements.length - 1)) == head)
                doubleCapacity();
        }
        
        public E pollFirst() {
            int h = head;
            @SuppressWarnings("unchecked")
            E result = (E) elements[h];
            // Element is null if deque empty
            if (result == null)
                return null;
            elements[h] = null;     // Must null out slot
            head = (h + 1) & (elements.length - 1);
            return result;
        }
        
        public E peekFirst() {
            // elements[head] is null if deque empty
            return (E) elements[head];
        }
    }
    

    线性表实现

    ArrayList
    public class ArrayList<E> extends AbstractList<E>
            implements List<E>, RandomAccess, Cloneable, java.io.Serializable
    {
        transient Object[] elementData;
        
        public E get(int index) {
            rangeCheck(index);
    
            return elementData(index);
        }
        
        public boolean add(E e) {
            ensureCapacityInternal(size + 1);  // Increments modCount!!
            elementData[size++] = e;
            return true;
        }
        
        public boolean remove(Object o) {
            if (o == null) {
                for (int index = 0; index < size; index++)
                    if (elementData[index] == null) {
                        fastRemove(index);
                        return true;
                    }
            } else {
                for (int index = 0; index < size; index++)
                    if (o.equals(elementData[index])) {
                        fastRemove(index);
                        return true;
                    }
            }
            return false;
        }
    }
    

    迭代器实现

    HashMap类中迭代器
        abstract class HashIterator {
            Node<K,V> next;        // next entry to return
            Node<K,V> current;     // current entry
            int expectedModCount;  // for fast-fail
            int index;             // current slot
    
            HashIterator() {
                expectedModCount = modCount;
                Node<K,V>[] t = table;
                current = next = null;
                index = 0;
                if (t != null && size > 0) { // advance to first entry
                    do {} while (index < t.length && (next = t[index++]) == null);
                }
            }
    
            public final boolean hasNext() {
                return next != null;
            }
    
            final Node<K,V> nextNode() {
                Node<K,V>[] t;
                Node<K,V> e = next;
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                if (e == null)
                    throw new NoSuchElementException();
                if ((next = (current = e).next) == null && (t = table) != null) {
                    do {} while (index < t.length && (next = t[index++]) == null);
                }
                return e;
            }
    
            public final void remove() {
                Node<K,V> p = current;
                if (p == null)
                    throw new IllegalStateException();
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                current = null;
                K key = p.key;
                removeNode(hash(key), key, null, false, false);
                expectedModCount = modCount;
            }
        }
    
        final class KeyIterator extends HashIterator
            implements Iterator<K> {
            public final K next() { return nextNode().key; }
        }
    
        final class ValueIterator extends HashIterator
            implements Iterator<V> {
            public final V next() { return nextNode().value; }
        }
    
        final class EntryIterator extends HashIterator
            implements Iterator<Map.Entry<K,V>> {
            public final Map.Entry<K,V> next() { return nextNode(); }
        }
    

    散列

    二叉查找树
    public class BinaryNode<T> {
        private T data;
        private BinaryNode<T> leftChild;
        private BinaryNode<T> rightChild;
    
        public BinaryNode() {
            this(null);
        }
    
        public BinaryNode(T data) {
            this(data, null, null);
        }
    
        public BinaryNode(T data, BinaryNode<T> leftChild, BinaryNode<T> rightChild) {
            this.data = data;
            this.leftChild = leftChild;
            this.rightChild = rightChild;
        }
    
        public boolean hasLeftChild() {
            return leftChild != null;
        }
    
        public boolean isLeaf() {
            return (leftChild == null) && (rightChild == null);
        }
    
        public int getNumberOfNodes() {
            int leftNumber = 0;
            int rightNumber = 0;
            if (leftChild != null) {
                leftNumber = leftChild.getNumberOfNodes();
            }
            if(rightChild != null) {
                rightNumber = rightChild.getNumberOfNodes();
            }
            return 1 + leftNumber + rightNumber;
        }
    
        public int getHeight(BinaryNode<T> node) {
            int height = 0;
            if (node != null) {
                height = 1 + Math.max(getHeight(node.getLeftChild()), getHeight(node.getRightChild()));
            }
            return height;
        }
    
        public BinaryNode<T> copy() {
            BinaryNode<T> newRoot = new BinaryNode<>(data);
            if(leftChild != null) {
                newRoot.setLeftChild(leftChild.copy());
            }
            if(rightChild != null) {
                newRoot.setRightChild(rightChild.copy());
            }
            return newRoot;
        }
    
        public T getData() {
            return data;
        }
    
        public void setData(T data) {
            this.data = data;
        }
    
        public BinaryNode<T> getLeftChild() {
            return leftChild;
        }
    
        public void setLeftChild(BinaryNode<T> leftChild) {
            this.leftChild = leftChild;
        }
    
        public BinaryNode<T> getRightChild() {
            return rightChild;
        }
    
        public void setRightChild(BinaryNode<T> rightChild) {
            this.rightChild = rightChild;
        }
    }
    
    
    public class BinaryTree<T> {
        private BinaryNode<T> root;
    
        public BinaryTree() {
            root = null;
        }
    
        public BinaryTree(T rootData) {
            root = new BinaryNode<>(rootData);
        }
    
        public BinaryTree(T rootData, BinaryTree<T> leftTree, BinaryTree<T> rightTree) {
            privateSetTree(rootData, leftTree, rightTree);
        }
    
        public void setTree(T rootData) {
            root = new BinaryNode<>(rootData);
        }
    
        private void privateSetTree(T rootData, BinaryTree<T> leftTree, BinaryTree<T> rightTree) {
            root = new BinaryNode<>(rootData);
            if((leftTree != null) && !leftTree.isEmpty()) {
                root.setLeftChild(leftTree.root.copy());
            }
    
            if((rightTree != null) && !leftTree.isEmpty()) {
                root.setRightChild(rightTree.root.copy());
            }
        }
    
        private boolean isEmpty() {
            return root == null;
        }
    
        public int getHeight() {
            return root.getHeight(root);
        }
    
        public int getNumberOfNodes() {
            return root.getNumberOfNodes();
        }
    
        public void inOrderTraverse() {
            inOrderTraverse(root);
        }
    
        private void inOrderTraverse(BinaryNode<T> node) {
            if(node != null) {
                System.out.println(node.getData());
                inOrderTraverse(node.getLeftChild());
                inOrderTraverse(node.getRightChild());
            }
        }
        // 中序遍历
        private void iterativeInorderTraverse() {
            Deque<BinaryNode> nodeStack = new LinkedList<>();
            BinaryNode<T> currentNode = root;
            while(!nodeStack.isEmpty() || currentNode != null) {
                while (currentNode != null) {
                    nodeStack.push(currentNode);
                    currentNode = currentNode.getLeftChild();
                }
    
                if (!nodeStack.isEmpty()) {
                    BinaryNode<T> nextNode = nodeStack.pop();
                    assert nextNode != null;
                    System.out.println(nextNode.getData());
                    currentNode = nextNode.getRightChild();
                }
            }
        }
    }
    
    二叉树遍历

    前序遍历

    class Solution {
        public List<Integer> preorderTraversal(TreeNode root) {
            List<Integer> res = new ArrayList<Integer>();
            preorder(root, res);
            return res;
        }
    
        public void preorder(TreeNode root, List<Integer> res) {
            if (root == null) {
                return;
            }
            res.add(root.val);
            preorder(root.left, res);
            preorder(root.right, res);
        }
    }
    

    链接:https://leetcode-cn.com/problems/binary-tree-preorder-traversal/solution/er-cha-shu-de-qian-xu-bian-li-by-leetcode-solution/

    中序遍历

    class Solution {
        public List<Integer> inorderTraversal(TreeNode root) {
            List<Integer> res = new ArrayList<Integer>();
            inorder(root, res);
            return res;
        }
    
        public void inorder(TreeNode root, List<Integer> res) {
            if (root == null) {
                return;
            }
            inorder(root.left, res);
            res.add(root.val);
            inorder(root.right, res);
        }
    }
    

    链接:https://leetcode-cn.com/problems/binary-tree-inorder-traversal/solution/er-cha-shu-de-zhong-xu-bian-li-by-leetcode-solutio/

    后序遍历

    class Solution {
        public List<Integer> postorderTraversal(TreeNode root) {
            List<Integer> res = new ArrayList<Integer>();
            postorder(root, res);
            return res;
        }
    
        public void postorder(TreeNode root, List<Integer> res) {
            if (root == null) {
                return;
            }
            postorder(root.left, res);
            postorder(root.right, res);
            res.add(root.val);
        }
    }
    

    链接:https://leetcode-cn.com/problems/binary-tree-postorder-traversal/solution/er-cha-shu-de-hou-xu-bian-li-by-leetcode-solution/

    层序遍历

    class Solution {
        public List<List<Integer>> levelOrder(TreeNode root) {
            List<List<Integer>> ret = new ArrayList<List<Integer>>();
            if (root == null) {
                return ret;
            }
    
            Queue<TreeNode> queue = new LinkedList<TreeNode>();
            queue.offer(root);
            while (!queue.isEmpty()) {
                List<Integer> level = new ArrayList<Integer>();
                int currentLevelSize = queue.size();
                for (int i = 1; i <= currentLevelSize; ++i) {
                    TreeNode node = queue.poll();
                    level.add(node.val);
                    if (node.left != null) {
                        queue.offer(node.left);
                    }
                    if (node.right != null) {
                        queue.offer(node.right);
                    }
                }
                ret.add(level);
            }
            
            return ret;
        }
    }
    

    链接:https://leetcode-cn.com/problems/binary-tree-level-order-traversal/solution/er-cha-shu-de-ceng-xu-bian-li-by-leetcode-solution/

    红黑树

    TreeMap

    public class TreeMap<K,V>
        extends AbstractMap<K,V>
        implements NavigableMap<K,V>, Cloneable, java.io.Serializable
    {
        static final class Entry<K,V> implements Map.Entry<K,V> {
            K key;
            V value;
            Entry<K,V> left;
            Entry<K,V> right;
            Entry<K,V> parent;
            boolean color = BLACK;
    
            Entry(K key, V value, Entry<K,V> parent) {
                this.key = key;
                this.value = value;
                this.parent = parent;
            }
        }
        
        public V put(K key, V value) {
            Entry<K,V> t = root;
            if (t == null) {
                compare(key, key); // type (and possibly null) check
    
                root = new Entry<>(key, value, null);
                size = 1;
                modCount++;
                return null;
            }
            int cmp;
            Entry<K,V> parent;
            // split comparator and comparable paths
            Comparator<? super K> cpr = comparator;
            if (cpr != null) {
                do {
                    parent = t;
                    cmp = cpr.compare(key, t.key);
                    if (cmp < 0)
                        t = t.left;
                    else if (cmp > 0)
                        t = t.right;
                    else
                        return t.setValue(value);
                } while (t != null);
            }
            else {
                if (key == null)
                    throw new NullPointerException();
                @SuppressWarnings("unchecked")
                    Comparable<? super K> k = (Comparable<? super K>) key;
                do {
                    parent = t;
                    cmp = k.compareTo(t.key);
                    if (cmp < 0)
                        t = t.left;
                    else if (cmp > 0)
                        t = t.right;
                    else
                        return t.setValue(value);
                } while (t != null);
            }
            Entry<K,V> e = new Entry<>(key, value, parent);
            if (cmp < 0)
                parent.left = e;
            else
                parent.right = e;
            fixAfterInsertion(e);
            size++;
            modCount++;
            return null;
        }
        
        public V get(Object key) {
            Entry<K,V> p = getEntry(key);
            return (p==null ? null : p.value);
        }
        
        final Entry<K,V> getEntry(Object key) {
            // Offload comparator-based version for sake of performance
            if (comparator != null)
                return getEntryUsingComparator(key);
            if (key == null)
                throw new NullPointerException();
            @SuppressWarnings("unchecked")
                Comparable<? super K> k = (Comparable<? super K>) key;
            Entry<K,V> p = root;
            while (p != null) {
                int cmp = k.compareTo(p.key);
                if (cmp < 0)
                    p = p.left;
                else if (cmp > 0)
                    p = p.right;
                else
                    return p;
            }
            return null;
        }
        
        private void rotateLeft(Entry<K,V> p) {
            if (p != null) {
                Entry<K,V> r = p.right;
                p.right = r.left;
                if (r.left != null)
                    r.left.parent = p;
                r.parent = p.parent;
                if (p.parent == null)
                    root = r;
                else if (p.parent.left == p)
                    p.parent.left = r;
                else
                    p.parent.right = r;
                r.left = p;
                p.parent = r;
            }
        }
    
        /** From CLR */
        private void rotateRight(Entry<K,V> p) {
            if (p != null) {
                Entry<K,V> l = p.left;
                p.left = l.right;
                if (l.right != null) l.right.parent = p;
                l.parent = p.parent;
                if (p.parent == null)
                    root = l;
                else if (p.parent.right == p)
                    p.parent.right = l;
                else p.parent.left = l;
                l.right = p;
                p.parent = l;
            }
        }
    }
    
    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出。
  • 相关阅读:
    不用加减乘除做加法
    数组中只出现一次的数字
    平衡二叉树
    二叉树的深度
    两个链表的第一个公共结点
    连续子数组的最大和
    最小的K个数
    数组中出现次数超过一半的数字
    二叉搜索树与双向链表
    复杂链表的复制
  • 原文地址:https://www.cnblogs.com/caozibiao/p/14291926.html
Copyright © 2011-2022 走看看