zoukankan      html  css  js  c++  java
  • Project Report: A Dog Breed Classifier

    A Dog Breed Classifier

    Setting

    • Jupyter Notebook
    • Keras

    Model

    • ResNet50

    Implementation

    • normalization
      • the mean pixel must be subtracted from every pixel in each image
    • keras.applications.resnet50
      • ResNet50
      • preprocess_input  (source)
        • input: a tensor
        • return: Preprocessed tensor
    • numpy.argmax
      • By taking the argmax of the predicted probability vector, we obtain an integer corresponding to the model's predicted object class, which we can identify with an object category through the use of the dictionary.
    • keras.layers
      • Conv2D
        • keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)
        • When using this layer as the first layer in a model, provide the keyword argument input_shape (tuple of integers, does not include the sample axis), e.g. input_shape=(128, 128, 3) for 128x128 RGB pictures in  data_format="channels_last".
      • MaxPooling2D
      • GlobalAveragePooling2D
  • 相关阅读:
    IK 用java 代码实现分词
    杭电2017
    线性表学习
    一个比较有意思的C语言问题
    杭电1020
    python注释
    Java API —— 递归
    Java API —— File类
    Java API —— 异常
    Map集合案例
  • 原文地址:https://www.cnblogs.com/casperwin/p/7727624.html
Copyright © 2011-2022 走看看