合并果子
来源:
2004年NOIP全国联赛普及组
题目描述:
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。
每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。
输入输出格式
输入格式:
输入文件fruit.in包括两行,第一行是一个整数n(1<=n<=10000),表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数ai(1<=ai<=20000)是第i种果子的数目。
输出格式:
输出文件fruit.out包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于2^31。
输入输出样例
输入样例#1:
3
1 2 9
输出样例#1:
15
说明:
对于30%的数据,保证有n<=1000:
对于50%的数据,保证有n<=5000;
对于全部的数据,保证有n<=10000。
思路:
堆排序
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=10010;
int n,m,ans,a[maxn];
bool cmp(int x,int y)
{
return x>y;
}
int main()
{
cin>>n;m=n;
for(int i=1;i<=n;i++)
cin>>a[i];
make_heap(a+1,a+n+1,cmp);
for(int i=1;i<n;i++)
{
int x=a[1];pop_heap(a+1,a+m+1,cmp);
int y=a[1];pop_heap(a+1,a+m,cmp);
ans+=x+y;a[m-1]=x+y;push_heap(a+1,a+m,cmp);
m--;
}
cout<<ans;
return 0;
}