zoukankan      html  css  js  c++  java
  • scala spark streaming 打印kafka 数据

    how-to-fix-java-io-notserializableexception-org-apache-kafka-clients-consumer

     The Kafka Consumer record object is received from Dstream. When you try to print it, it gives error because that object is not serailizable. Instead you should get values from ConsumerRecord object and print it.

    参考链接:https://stackoverflow.com/questions/40570874/how-to-fix-java-io-notserializableexception-org-apache-kafka-clients-consumer

    1、获取kafka数据

    /**
     * @author xlxxx
     * @date xxxx 16:49
     * @version 1.0
     */
    class WindowsFunction {
    
    }
    
    import org.apache.spark.SparkConf
    import org.apache.spark.streaming.dstream.DStream
    import org.apache.spark.streaming.kafka010.{ConsumerStrategies, LocationStrategies}
    //import org.apache.spark.streaming.kafka.KafkaUtil
    //import org.apache.spark.streaming.kafka010.KafkaUtils
    import org.apache.kafka.clients.consumer.ConsumerConfig
    import org.apache.kafka.common.serialization.StringDeserializer
    import org.apache.spark.streaming.kafka010.KafkaUtils
    import org.apache.spark.streaming.{Seconds, StreamingContext}
    object WindowsFunction {
    
      //利用用户消费金额总和计算结果以及用户消费次数统计计算结果计算平均消费金额
      def avgFunction(sum:DStream[(String,Double)],count:DStream[(String,Int)]): DStream[(String,Double)] = {
        val payment = sum.join(count).map(r => {
          val user = r._1
          val sum = r._2._1
          val count = r._2._2
          (user,sum/count)
        })
        payment
      }
    
      def main (args: Array[String]) {
    
        def functionToCreateContext(): StreamingContext = {
          val conf = new SparkConf().setAppName("test").setMaster("local[*]")
          val ssc = new StreamingContext(conf, Seconds(5))
    
    //      val zkQuorum = "localhost:2181,192.168.6.56:2181,192.168.6.57:2181"
          val zkQuorum = "localhost:9092"
          val brokers = zkQuorum
          val consumerGroupName = "user_payment"
          val kafkaTopic = "testkafka"
          val kafkaThreadNum = 1
    
          val topicMap = kafkaTopic.split(",").map((_, kafkaThreadNum.toInt)).toMap
          println(topicMap)
    //      val user_payment = KafkaUtils.createDirectStream(ssc, zkQuorum, consumerGroupName, topicMap).map(x=>{
    //        parse(x._2)
    //      })
    
          val topicsSet = kafkaTopic.split(",").toSet
          val kafkaParams = Map[String, Object](
            ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> brokers,
            ConsumerConfig.GROUP_ID_CONFIG -> consumerGroupName,
            ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> classOf[StringDeserializer],
            ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> classOf[StringDeserializer])
          val user_payment = KafkaUtils.createDirectStream[String, String](
      ssc,
      LocationStrategies.PreferConsistent,
      ConsumerStrategies.Subscribe[String, String](topicsSet, kafkaParams))
         //from old
    //     val Array(brokers, groupId, topics) = args
    //      val messages = KafkaUtils.createDirectStream[String, String](
    //        ssc,
    //        LocationStrategies.PreferConsistent,
    //        ConsumerStrategies.Subscribe[String, String](topicsSet, kafkaParams))
    
          //from olds
          user_payment.foreachRDD { rdd =>
            rdd.foreach { record =>
              val value = record.value()
              println(record)
            }
          }
    //      user_payment.map(jsonLine => print("========"+jsonLine))
    //      user_payment.map(record=>(record.value().toString)).print
    //      user_payment.print()
          //计算每5s每个用户的消费总和
    //      val paymentSum = user_payment.map(jsonLine =>{
    ////        implicit val formats = DefaultFormats
    //        println(jsonLine)
    ////        val user = (jsonLine  "user").extract[String]
    ////        val payment = (jsonLine  "payment").extract[String]
    ////        (user,payment)
    ////        ('user',1)
    //      }).flatMap((_.split(" "))).reduceByKey(_+_)
    //      val paymentSum = user_payment.map(_.value).flatMap().reduceByKey(_+_)
    
          //输出结果
    //      paymentSum.print()
    //
    //      //计算每5s每个用户的消费次数
    //      val paymentCount = user_payment.map(jsonLine =>{
    //        implicit val formats = DefaultFormats
    //        val user = (jsonLine  "user").extract[String]
    //        (user,1)
    //      }).reduceByKey(_+_)
    //
    //      //      paymentCount.print()
    //
    //      //计算每5s每个用户平均的消费金额
    //      val paymentAvg = avgFunction(paymentSum,paymentCount)
    //      //      paymentAvg.print()
    
          //窗口操作,在其中计算不同时间段的结果,入库的话根据使用场景选择吧
    //      def windowsFunction()  {
    //        //每5秒计算最后30秒每个用户消费金额
    //        val windowSum_30 = paymentSum.reduceByKeyAndWindow((a: Double, b: Double) => (a + b),_-_, Seconds(30), Seconds(5))
    //        //        windowSum_30.print()
    //
    //        //每5秒计算最后30秒每个用户消费次数
    //        val windowCount_30 = paymentCount.reduceByKeyAndWindow((a: Int, b: Int) => (a + b),_-_, Seconds(30), Seconds(5))
    //        //        windowCount_30.print()
    //
    //        //每5秒计算最后30秒每个用户平均消费
    //        val windowAvg_30 = avgFunction(windowSum_30,windowCount_30)
    //        //        windowAvg_30.print()
    //
    //        //每5秒计算最后60秒每个用户消费金额
    //        val windowSum_60 = windowSum_30.reduceByKeyAndWindow((a:Double,b:Double)=>(a+b),_-_,Seconds(10),Seconds(5))
    //        //       windowSum_60.print()
    //
    //        //每5秒计算最后60秒每个用户消费次数
    //        val windowCount_60 = windowCount_30.reduceByKeyAndWindow((a:Int,b:Int) => (a+b),_-_,Seconds(10),Seconds(5))
    //        //        windowCount_60.print()
    //
    //        //每5秒计算最后60秒每个用户平均消费
    //        val windowAvg_60 = avgFunction(windowSum_60,windowCount_60)
    //        //        windowAvg_60.print
    //      }
    //
    //      windowsFunction()
    
          ssc
        }
    
        val context = StreamingContext.getOrCreate("checkPoint", functionToCreateContext _)
    
        context.start()
        context.awaitTermination()
      }
    }
    

     2、debug 截图:

        

      //map 打印

  • 相关阅读:
    Prometheus监控概述
    Zabbix自带模板监控MySQL
    Zabbix ODBC监控MYSQL
    Zabbix LLD 设置过滤条件,过滤某些item
    zabbix 3.4版本预处理
    zabbix proxy分布式监控配置
    zabbix_proxy.conf配置文件参数说明
    zabbix自定义用户key与参数Userparameters监控脚本输出
    zabbix_server.conf配置文件详解
    zabbixAgent配置文件详解zabbix_agentd.conf
  • 原文地址:https://www.cnblogs.com/cbugs/p/14213305.html
Copyright © 2011-2022 走看看