zoukankan      html  css  js  c++  java
  • CF729C Road to Cinema

    写在前面

    又开始(CF)之旅了,嘻嘻:-)

    Idea

    链接

    这是一道二分,教练推荐的。

    仔细看题后,求的是:找到一个能够在要求时间内到达的最小油量

    讲车辆按照价格从小到大排序,第一个油箱大于最小油量的车子就是(Ans)

    如何求? 贪心。

    在这之前解一个方程组:设在(s;m)之内,加速的位移是(x;m),平速的位移为(y;m),则

    [egin{cases}x+y=s\x+y imes 2=tend{cases} ]

    解得(x=2 imes s-t)

    来分析下样例一

    • (x=2 imes s-t=6),即加速位移为6,把路程分为两段:(3;And;5)

    • 第一段全加速,耗油6;第二段3加速,2平速,耗油8。

    • (Ans=max(6,8)=8),容易得出答案10;

      但是,会有一种情况卡掉它

    • (e.g:)我们把道路分成两段,(5;And;5)(x=2),最小耗油量为7

    但可以看出来,还有更好的答案;

    接下来我们这样考虑:对于每个油量(v),我们可以判断出能不能在(t)时刻内到达,怎么判断呢?

    解方程。youl.png

    设 对于加油站分成的一小段路程(l),我们设加速里程是(x),平速里程是(y),可以得出

    [egin{cases}x+y=l\x imes 2+y le vend{cases} ]

    解得(x le v-s),但若想时间最小,加速位移也就最大(应该没问题吧),即(x=v-l)

    (x+2 imes y=3 imes l-v)

    注意:

    (v < l)时,无论如何油量都不够走完这段路程,(v > 2 imes l)时,这一段路程可以一直加速,也就是时间是L。也就是说我们上面算出来的这一段的最短时间(3 imes l-v)是当(l le v le 2 imes L)时的取值。

    Code​

    struct Node{
    	int p,f;
    	inline bool operator<(const Node&x)const{return p<x.p;}
    }c[maxn];
    int d[maxn],f[maxn];
    int n,k,s,t;
    inline bool check(int x){
    	int res=0;
    	for(int i=0;i<=k;i++){
    		int l=d[i];
    		if(x>l*2) res+=l;
    		else if(x<l) return 0;
    		else res+=l*3-x;
    	}
    	return res<=t;
    } 
    inline int solve(){
    	int l=1,r=inf;
    	while(l<=r){
    		int mid=l+r>>1;
    		if(check(mid)) r=mid-1;
    		else l=mid+1;
    	}
    	return l;
    }
    signed main(){
    	n=read(); k=read(); s=read(); t=read();
    	for(int i=0;i<n;i++) c[i].p=read(),c[i].f=read();
    	sort(c,c+n);
    	for(int i=0;i<k;i++)
    		f[i]=read();
    	sort(f,f+k);
    	for(int i=1;i<k;i++)
    		d[i]=f[i]-f[i-1];
    	d[0]=f[0];
    	d[k]=s-f[k-1];
    	int minn=solve();
    	int ans=0;
    	for(int i=0;i<n;i++)
    	if(c[i].f>=minn){
    		ans=c[i].p;
    		break;
    	}
    	if(minn==inf) puts("-1");
    	else if(!ans) puts("-1");
    	else printf("%d",ans);
    	return 0;
    } 
    

    [The quad End ]

    [ ext{且怒且悲且狂哉,是人是鬼是妖怪;不过是,心有魔债-《悟空》戴荃} ]

  • 相关阅读:
    大数据处理系列之(二)系统过载保护
    大数据处理系列之(一)Java线程池使用
    js实现递归菜单无限层
    treeTable实现排序
    spring-dm 一个简单的实例
    Equinox OSGi服务器应用程序的配置步骤 (支持JSP页面)
    Spring DM 2.0 环境配置 解决Log4j问题
    Spring.DM web开发环境搭建
    STL容器的排序
    排序例子
  • 原文地址:https://www.cnblogs.com/cbyyc/p/11594184.html
Copyright © 2011-2022 走看看