一、UDAF简介
先解释一下什么是UDAF(User Defined Aggregate Function),即用户定义的聚合函数,聚合函数和普通函数的区别是什么呢,普通函数是接受一行输入产生一个输出,聚合函数是接受一组(一般是多行)输入然后产生一个输出,即将一组的值想办法聚合一下。
关于UDAF的一个误区
我们可能下意识的认为UDAF是需要和group by一起使用的,实际上UDAF可以跟group by一起使用,也可以不跟group by一起使用,这个其实比较好理解,联想到mysql中的max、min等函数,可以:
select max(foo) from foobar group by bar;
表示根据bar字段分组,然后求每个分组的最大值,这时候的分组有很多个,使用这个函数对每个分组进行处理,也可以:
select max(foo) from foobar;
这种情况可以将整张表看做是一个分组,然后在这个分组(实际上就是一整张表)中求最大值。所以聚合函数实际上是对分组做处理,而不关心分组中记录的具体数量。
二、UDAF使用
2.1 继承UserDefinedAggregateFunction
使用UserDefinedAggregateFunction的套路:
1. 自定义类继承UserDefinedAggregateFunction,对每个阶段方法做实现
2. 在spark中注册UDAF,为其绑定一个名字
3. 然后就可以在sql语句中使用上面绑定的名字调用
下面写一个计算平均值的UDAF例子,首先定义一个类继承UserDefinedAggregateFunction:
package cc11001100.spark.sql.udaf import org.apache.spark.sql.Row import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction} import org.apache.spark.sql.types._ object AverageUserDefinedAggregateFunction extends UserDefinedAggregateFunction { // 聚合函数的输入数据结构 override def inputSchema: StructType = StructType(StructField("input", LongType) :: Nil) // 缓存区数据结构 override def bufferSchema: StructType = StructType(StructField("sum", LongType) :: StructField("count", LongType) :: Nil) // 聚合函数返回值数据结构 override def dataType: DataType = DoubleType // 聚合函数是否是幂等的,即相同输入是否总是能得到相同输出 override def deterministic: Boolean = true // 初始化缓冲区 override def initialize(buffer: MutableAggregationBuffer): Unit = { buffer(0) = 0L buffer(1) = 0L } // 给聚合函数传入一条新数据进行处理 override def update(buffer: MutableAggregationBuffer, input: Row): Unit = { if (input.isNullAt(0)) return buffer(0) = buffer.getLong(0) + input.getLong(0) buffer(1) = buffer.getLong(1) + 1 } // 合并聚合函数缓冲区 override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = { buffer1(0) = buffer1.getLong(0) + buffer2.getLong(0) buffer1(1) = buffer1.getLong(1) + buffer2.getLong(1) } // 计算最终结果 override def evaluate(buffer: Row): Any = buffer.getLong(0).toDouble / buffer.getLong(1) }
然后注册并使用它:
package cc11001100.spark.sql.udaf import org.apache.spark.sql.SparkSession object SparkSqlUDAFDemo_001 { def main(args: Array[String]): Unit = { val spark = SparkSession.builder().master("local[*]").appName("SparkStudy").getOrCreate() spark.read.json("data/user").createOrReplaceTempView("v_user") spark.udf.register("u_avg", AverageUserDefinedAggregateFunction) // 将整张表看做是一个分组对求所有人的平均年龄 spark.sql("select count(1) as count, u_avg(age) as avg_age from v_user").show() // 按照性别分组求平均年龄 spark.sql("select sex, count(1) as count, u_avg(age) as avg_age from v_user group by sex").show() } }
使用到的数据集:
{"id": 1001, "name": "foo", "sex": "man", "age": 20} {"id": 1002, "name": "bar", "sex": "man", "age": 24} {"id": 1003, "name": "baz", "sex": "man", "age": 18} {"id": 1004, "name": "foo1", "sex": "woman", "age": 17} {"id": 1005, "name": "bar2", "sex": "woman", "age": 19} {"id": 1006, "name": "baz3", "sex": "woman", "age": 20}
运行结果:
2.2 继承Aggregator
还有另一种方式就是继承Aggregator这个类,优点是可以带类型:
package cc11001100.spark.sql.udaf import org.apache.spark.sql.expressions.Aggregator import org.apache.spark.sql.{Encoder, Encoders} /** * 计算平均值 * */ object AverageAggregator extends Aggregator[User, Average, Double] { // 初始化buffer override def zero: Average = Average(0L, 0L) // 处理一条新的记录 override def reduce(b: Average, a: User): Average = { b.sum += a.age b.count += 1L b } // 合并聚合buffer override def merge(b1: Average, b2: Average): Average = { b1.sum += b2.sum b1.count += b2.count b1 } // 减少中间数据传输 override def finish(reduction: Average): Double = reduction.sum.toDouble / reduction.count override def bufferEncoder: Encoder[Average] = Encoders.product // 最终输出结果的类型 override def outputEncoder: Encoder[Double] = Encoders.scalaDouble } /** * 计算平均值过程中使用的Buffer * * @param sum * @param count */ case class Average(var sum: Long, var count: Long) { } case class User(id: Long, name: String, sex: String, age: Long) { }
调用:
package cc11001100.spark.sql.udaf import org.apache.spark.sql.SparkSession object AverageAggregatorDemo_001 { def main(args: Array[String]): Unit = { val spark = SparkSession.builder().master("local[*]").appName("SparkStudy").getOrCreate() import spark.implicits._ val user = spark.read.json("data/user").as[User] user.select(AverageAggregator.toColumn.name("avg")).show() } }
运行结果:
.