zoukankan      html  css  js  c++  java
  • zoj 1648 判断线段是否相交

    链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=648

    Circuit Board

    Time Limit: 2 Seconds      Memory Limit: 65536 KB

    On the circuit board, there are lots of circuit paths. We know the basic constrain is that no two path cross each other, for otherwise the board will be burned.

    Now given a circuit diagram, your task is to lookup if there are some crossed paths. If not find, print "ok!", otherwise "burned!" in one line.

    A circuit path is defined as a line segment on a plane with two endpoints p1(x1,y1) and p2(x2,y2).

    You may assume that no two paths will cross each other at any of their endpoints.


    Input

    The input consists of several test cases. For each case, the first line contains an integer n(<=2000), the number of paths, then followed by n lines each with four float numbers x1, y1, x2, y2.


    Output

    If there are two paths crossing each other, output "burned!" in one line; otherwise output "ok!" in one line.


    Sample Input

    1
    0 0 1 1

    2
    0 0 1 1
    0 1 1 0


    Sample Output

    ok!
    burned!

    。/。/。/。/。/。/。/。/。/。/。/。/。/。/。/。/。/。/。/。/。/。/。/。/

    模板题~~~

      1 #include <stdio.h>
      2 #include <string.h>
      3 #include <stdlib.h>
      4 #include <math.h>
      5 #include <iostream>
      6 #include <algorithm>
      7 #define eps 1e-6
      8 
      9 struct point
     10 {
     11     double x,y;
     12 };
     13 
     14 struct beline
     15 {
     16     point a,b;
     17 };
     18 
     19 using namespace std;
     20 
     21 point p[5000];
     22 
     23 bool dy(double x,double y)
     24 {
     25     return x > y+eps;
     26 }
     27 bool xy(double x,double y)
     28 {
     29     return x < y-eps;
     30 }
     31 bool xyd(double x,double y)
     32 {
     33     return x < y+eps;
     34 }
     35 bool dyd(double x,double y)
     36 {
     37     return x > y-eps;
     38 }
     39 double dd(double x,double y)
     40 {
     41     return fabs(x-y) < eps;
     42 }
     43 
     44 double crossProduct(point a,point b,point c)
     45 {
     46     return (c.x-a.x)*(b.y-a.y)-(c.y-a.y)*(b.x-a.x);
     47 }
     48 
     49 bool onSegment(point a,point b,point c)
     50 {
     51     double maxx=max(a.x,b.x);
     52     double maxy=max(a.y,b.y);
     53     double minx=min(a.x,b.x);
     54     double miny=min(a.y,b.y);
     55     if(dd(crossProduct(a,b,c),0.0)&&dyd(c.x,minx)&&xyd(c.x,maxx)
     56         &&dyd(c.y,miny)&&xyd(c.y,maxy))
     57         return true;
     58     return false;
     59 }
     60 
     61 bool segIntersect(point p1,point p2,point p3,point p4)
     62 {
     63     double d1 = crossProduct(p3,p4,p1);
     64     double d2 = crossProduct(p3,p4,p2);
     65     double d3 = crossProduct(p1,p2,p3);
     66     double d4 = crossProduct(p1,p2,p4);
     67     if(xy(d1*d2,0.0)&&xy(d3*d4,0.0))
     68         return true;
     69     if(dd(d1,0.0)&&onSegment(p3,p4,p1))
     70         return true;
     71     if(dd(d2,0.0)&&onSegment(p3,p4,p2))
     72         return true;
     73     if(dd(d3,0.0)&&onSegment(p1,p2,p3))
     74         return true;
     75     if(dd(d4,0.0)&&onSegment(p1,p2,p4))
     76         return true;
     77     return false;
     78 }
     79 
     80 int main()
     81 {
     82     beline p[5000];
     83     int n,i,j;
     84     while(scanf("%d",&n)!=EOF)
     85     {
     86         for(i=0;i<n;i++)
     87         {
     88                  scanf("%lf%lf%lf%lf",&p[i].a.x,&p[i].a.y,&p[i].b.x,&p[i].b.y);
     89         }
     90 
     91         if(n<=1)
     92         {
     93             printf("ok!
    ");
     94             continue;
     95         }
     96 
     97         bool flag=false;
     98         for(i=0;i<n;i++)
     99         {
    100             for(j=i+1;j<n;j++)
    101             {
    102                 if(segIntersect(p[i].a,p[i].b,p[j].a,p[j].b))
    103                 {
    104                     flag=true;
    105                     break;
    106                 }
    107             }
    108         }
    109         if(flag)
    110         {
    111             printf("burned!
    ");
    112         }
    113         else
    114         {
    115             printf("ok!
    ");
    116         }
    117     }
    118     return 0;
    119 }
  • 相关阅读:
    印刷行业合版BOM全阶维护示例
    C#实现WinForm禁止最大化、最小化、双击标题栏、双击图标等操作的方法
    EasyUI Tree节点拖动到指定容器
    Excel GET.DOCUMENT说明
    Excel GET.CELL说明
    ExecuteExcel4Macro (宏函数)使用说明
    MSSQL:查看所有触发器信息的命令
    SQL Server 2008作业失败:无法确定所有者是否有服务器访问权限
    Cocoa History
    Working with Methods
  • 原文地址:https://www.cnblogs.com/ccccnzb/p/3862200.html
Copyright © 2011-2022 走看看