zoukankan      html  css  js  c++  java
  • poj 2954 Triangle(Pick定理)

    链接:http://poj.org/problem?id=2954

    Triangle
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 5043   Accepted: 2164

    Description

    lattice point is an ordered pair (xy) where x and y are both integers. Given the coordinates of the vertices of a triangle (which happen to be lattice points), you are to count the number of lattice points which lie completely inside of the triangle (points on the edges or vertices of the triangle do not count).

    Input

    The input test file will contain multiple test cases. Each input test case consists of six integers x1y1x2y2x3, and y3, where (x1y1), (x2y2), and (x3y3) are the coordinates of vertices of the triangle. All triangles in the input will be non-degenerate (will have positive area), and −15000 ≤ x1y1x2y2x3y3 ≤ 15000. The end-of-file is marked by a test case with x1 =  y1 =x2 = y2 = x3 = y3 = 0 and should not be processed.

    Output

    For each input case, the program should print the number of internal lattice points on a single line.

    Sample Input

    0 0 1 0 0 1
    0 0 5 0 0 5
    0 0 0 0 0 0

    Sample Output

    0
    6

    |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

    继续用pick定理,area=i + b / 2 -1

    注意判结束时不可(a+b+c+d)看是否为零,因为有负数

     1 #include <stdio.h>
     2 #include <string.h>
     3 #include <stdlib.h>
     4 #include <math.h>
     5 #include <iostream>
     6 #include <algorithm>
     7 
     8 using namespace std;
     9 
    10 typedef struct
    11 {
    12     double x,y;
    13 }point;
    14 
    15 double crossProduct(point a,point b,point c)
    16 {
    17     return (c.x-a.x)*(b.y-a.y)-(c.y-a.y)*(b.x-a.x);
    18 }
    19 
    20 int gcd(int a,int b)
    21 {
    22     return b ? gcd(b,a%b) : a;
    23 }
    24 
    25 point p[4];
    26 
    27 int onEdge(int n)
    28 {
    29     int sum=0;
    30     p[n]=p[0];
    31     for(int i=0; i<n; i++)
    32     {
    33         sum+=gcd(abs((int)(p[i].x-p[i+1].x)),abs((int)(p[i].y-p[i+1].y)));
    34     }
    35     return sum;
    36 }
    37 
    38 int main()
    39 {
    40     while(scanf("%lf%lf%lf%lf%lf%lf",&p[0].x,&p[0].y,&p[1].x,&p[1].y,&p[2].x,&p[2].y)!=EOF
    41           && p[0].x!=0||p[0].y!=0||p[1].x!=0||p[1].y!=0||p[2].x!=0||p[2].y!=0)
    42     {
    43         double area=fabs(crossProduct(p[0],p[1],p[2]))/2.0;
    44         int edge=onEdge(3);
    45         printf("%d
    ",(int)area+1-edge/2);
    46     }
    47     return 0;
    48 }
    View Code
  • 相关阅读:
    关于排列组合与分配问题
    Stirling数
    UVA 294 求约数的个数
    Linux中profile与bashrc的作用
    一致性哈希(consistent hashing)算法
    TCP三次握手与四次挥手
    MySQL查询昨天、今天、7天、近30天、本月、上一月数据
    java基础-注解Annotation原理和用法
    java基础-浅复制与深复制的理解
    Linux命令行提示符设置
  • 原文地址:https://www.cnblogs.com/ccccnzb/p/3929825.html
Copyright © 2011-2022 走看看