zoukankan      html  css  js  c++  java
  • poj 2954 Triangle(Pick定理)

    链接:http://poj.org/problem?id=2954

    Triangle
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 5043   Accepted: 2164

    Description

    lattice point is an ordered pair (xy) where x and y are both integers. Given the coordinates of the vertices of a triangle (which happen to be lattice points), you are to count the number of lattice points which lie completely inside of the triangle (points on the edges or vertices of the triangle do not count).

    Input

    The input test file will contain multiple test cases. Each input test case consists of six integers x1y1x2y2x3, and y3, where (x1y1), (x2y2), and (x3y3) are the coordinates of vertices of the triangle. All triangles in the input will be non-degenerate (will have positive area), and −15000 ≤ x1y1x2y2x3y3 ≤ 15000. The end-of-file is marked by a test case with x1 =  y1 =x2 = y2 = x3 = y3 = 0 and should not be processed.

    Output

    For each input case, the program should print the number of internal lattice points on a single line.

    Sample Input

    0 0 1 0 0 1
    0 0 5 0 0 5
    0 0 0 0 0 0

    Sample Output

    0
    6

    |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

    继续用pick定理,area=i + b / 2 -1

    注意判结束时不可(a+b+c+d)看是否为零,因为有负数

     1 #include <stdio.h>
     2 #include <string.h>
     3 #include <stdlib.h>
     4 #include <math.h>
     5 #include <iostream>
     6 #include <algorithm>
     7 
     8 using namespace std;
     9 
    10 typedef struct
    11 {
    12     double x,y;
    13 }point;
    14 
    15 double crossProduct(point a,point b,point c)
    16 {
    17     return (c.x-a.x)*(b.y-a.y)-(c.y-a.y)*(b.x-a.x);
    18 }
    19 
    20 int gcd(int a,int b)
    21 {
    22     return b ? gcd(b,a%b) : a;
    23 }
    24 
    25 point p[4];
    26 
    27 int onEdge(int n)
    28 {
    29     int sum=0;
    30     p[n]=p[0];
    31     for(int i=0; i<n; i++)
    32     {
    33         sum+=gcd(abs((int)(p[i].x-p[i+1].x)),abs((int)(p[i].y-p[i+1].y)));
    34     }
    35     return sum;
    36 }
    37 
    38 int main()
    39 {
    40     while(scanf("%lf%lf%lf%lf%lf%lf",&p[0].x,&p[0].y,&p[1].x,&p[1].y,&p[2].x,&p[2].y)!=EOF
    41           && p[0].x!=0||p[0].y!=0||p[1].x!=0||p[1].y!=0||p[2].x!=0||p[2].y!=0)
    42     {
    43         double area=fabs(crossProduct(p[0],p[1],p[2]))/2.0;
    44         int edge=onEdge(3);
    45         printf("%d
    ",(int)area+1-edge/2);
    46     }
    47     return 0;
    48 }
    View Code
  • 相关阅读:
    docker使用以及dockerfile编写
    c++:空构造空析构的益处之一
    python os.path模块常用方法详解(转)
    enlarge your dataset
    解决镜像无法删除的问题multiple repositories
    Ubuntu 14.04 LTS 安装Docker(转)
    忘记root密码,怎么办
    [Unity3D]降低向Shader中传值的开销
    Shader预处理宏、内置状态变量、多版本编译等
    Unity Shader 常用函数列表
  • 原文地址:https://www.cnblogs.com/ccccnzb/p/3929825.html
Copyright © 2011-2022 走看看