zoukankan      html  css  js  c++  java
  • 【二叉树】详解2-3查找树(算法4)

    2-3查找树

    本质是一颗二叉查找树,分别有2种节点:

    (1)2节点:含有一个键和两条连接(左连接都小于键,右连接都大于键)

    (2)3节点:含有两个键和三条连接(左连接都小于两个键,中连接值位于两个键之间的,右连接大于键)

     这里注意:2、3针对的是连接的数量 而不是键值的数量

    完美平衡2-3查找树:所有空连接到根结点的距离相同。

    一、查找

     (1)判断和根节点键是否一致,如果和任意一个相等,则命中

    (2)如果不相等,根据比较的结果去到相应的区间

    (3)在相应的子树进行递归查找,如果子树为空连接则查找失败。

    二、向2节点插入(结束的节点为2节点)

     如果我们想在上图树中插入K,先查找,结果是未命中,所以要进行插入。

    (1)将2节点替换为一个3节点

    三、向只有一个3节点插入(只有一个节点不明白吗,就是这个树 只有一个节点 就是一个3节点)

    (1)先将新键插入3节点,生成一个4节点(再次重申:4节点对应的是3个键 4条连接)

    (2)将4节点化为3个2节点

    (3)结果还是平衡的(原来完美平衡二叉树,空连接到根节点为n,现在为n+1)

    (平衡的意思是:任意节点的子树的高度差都小于等于1)

    四、向一个3节点插入,父节点为2节点

     (1)创造一个临时4节点

    (2)将4节点的中键移入父2节点里(为什么是中键,上图例子:X上去 组成(R,X)2节点 才能出现,S在(R,X)中间连接,Z在右连接,反向同理)

    (3)完成插入,依旧平衡且有序

    五、向一个3节点插入,其父节点为3节点

    (1)创建临时4节点 (A,C,D)

    (2)将中键C传给父3节点

    (3)父3节点(E,J)依旧创建临时4节点(C,E,J)

    (4)将中键E上传

    。。。。。

    (n)直到遇到一个2节点,将他变为3节点

    (n)根节点也为3节点,就应用 本文的第三个方法 将3节点变为2节点

    六、将一个4节点分解到一个2-3查找树的6种情况

  • 相关阅读:
    mysql存储过程
    Mysql中的触发器
    快速开始、环境搭建、修改包名、新建模块、正式部署
    windows下redis下载安装
    Windows10下mysql 8.0.19 安装配置方法图文教程
    IDEA中安装SVN
    常见页面报错
    Python AttributeError: 'Module' object has no attribute 'STARTF_USESHOWINDOW'
    如何编写一篇高质量的技术博文?学习本文的排名靠前大法
    Linux use apktool problem包体变大GLIBC2.14等问题
  • 原文地址:https://www.cnblogs.com/cckong/p/14293739.html
Copyright © 2011-2022 走看看