zoukankan      html  css  js  c++  java
  • dp

    A. Sorting Railway Cars
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    An infinitely long railway has a train consisting of n cars, numbered from 1 to n (the numbers of all the cars are distinct) and positioned in arbitrary order. David Blaine wants to sort the railway cars in the order of increasing numbers. In one move he can make one of the cars disappear from its place and teleport it either to the beginning of the train, or to the end of the train, at his desire. What is the minimum number of actions David Blaine needs to perform in order to sort the train?

    Input

    The first line of the input contains integer n (1 ≤ n ≤ 100 000) — the number of cars in the train.

    The second line contains n integers pi (1 ≤ pi ≤ n, pi ≠ pj if i ≠ j) — the sequence of the numbers of the cars in the train.

    Output

    Print a single integer — the minimum number of actions needed to sort the railway cars.

    Examples
    Input
    5
    4 1 2 5 3
    Output
    2
    Input
    4
    4 1 3 2
    Output
    2
    Note

    In the first sample you need first to teleport the 4-th car, and then the 5-th car to the end of the train.

    题目大意 :

      每次只能将一个汽车移动到序列最前或最后 , 问最小移动次数 。

    思路 : 只要我找到 这串数字的 最长连续数 的个数 , 如 1 3 2 4 5 , 可以看出这段数的最长连续数的个数是 3 个 , 因此递推的状态转移方程是 dp[pre[i]] = dp[pre[ i ] - 1] + 1;

    代码示例 :

     

    /*
     * Author:  ry 
     * Created Time:  2017/9/28 14:25:17
     * File Name: 1.cpp
     */
    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include <string>
    #include <vector>
    #include <stack>
    #include <queue>
    #include <set>
    #include <time.h>
    using namespace std;
    const int eps = 1e5+5;
    const double pi = acos(-1.0);
    #define Max(a,b) a>b?a:b
    #define Min(a,b) a>b?b:a
    #define ll long long
    
    int pre[eps];
    int dp[eps];
    
    int main() {
        int n;
        
        while (~scanf("%d", &n)){
            memset(dp, 0, sizeof(dp));
            for(int i = 1; i <= n; i++){
                scanf("%d", pre+i);
            }
            for(int i = 1; i <= n; i++)
                dp[pre[i]] = dp[pre[i]-1] + 1;
            printf("%d
    ", n - *max_element(dp+1, dp+1+n));
        }
    
        return 0;
    }
    

    /*
     * Author:  ry 
     * Created Time:  2017/9/28 14:25:17
     * File Name: 1.cpp
     */
    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include <string>
    #include <vector>
    #include <stack>
    #include <queue>
    #include <set>
    #include <time.h>
    using namespace std;
    const int eps = 1e5+5;
    const double pi = acos(-1.0);
    #define Max(a,b) a>b?a:b
    #define Min(a,b) a>b?b:a
    #define ll long long
    
    int pre[eps];
    int dp[eps];
    
    int main() {
        int n;
        
        while (~scanf("%d", &n)){
            memset(dp, 0, sizeof(dp));
            for(int i = 1; i <= n; i++){
                scanf("%d", pre+i);
            }
            for(int i = 1; i <= n; i++)
                dp[pre[i]] = dp[pre[i]-1] + 1;
            printf("%d
    ", n - *max_element(dp+1, dp+1+n));
        }
    
        retu
    东北日出西边雨 道是无情却有情
  • 相关阅读:
    HBase读写数据的详细流程及ROOT表/META表介绍
    HBase的概述和安装部署
    Linux常用命令行补充——持续更新
    电信项目java补充类
    Kafka的接口回调 +自定义分区、拦截器
    Kafka命令行操作及常用API
    Kafka概述及安装部署
    Kafka生产者案例报警告SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
    python threading
    python thread
  • 原文地址:https://www.cnblogs.com/ccut-ry/p/7606590.html
Copyright © 2011-2022 走看看