zoukankan      html  css  js  c++  java
  • 最短路

    While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

    As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

    To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

    Input
    Line 1: A single integer, F. F farm descriptions follow.
    Line 1 of each farm: Three space-separated integers respectively: N, M, and W
    Lines 2.. M+1 of each farm: Three space-separated numbers ( S, E, T) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
    Lines M+2.. M+ W+1 of each farm: Three space-separated numbers ( S, E, T) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.
    Output
    Lines 1.. F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).
    Sample Input
    2
    3 3 1
    1 2 2
    1 3 4
    2 3 1
    3 1 3
    3 2 1
    1 2 3
    2 3 4
    3 1 8
    Sample Output
    NO
    YES
    Hint
    For farm 1, FJ cannot travel back in time.
    For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.
     
    题意 :
      有一个新概念虫洞,这个人可以穿过这条道路,并且时间会回溯T妙,问此人是否可以通过穿越虫洞回溯时间看到自己。实质上就是判断图中有无负环。
    思路 :
    SPFA : BF算法的优化,从一个点出发,更新它可以到达的所有点,把可以到的,更新的点,并且不再队列中的点,再重新加入到队列中。
        如何判断有无负环呢?一个点的更新次数如果大于 n-1次,那么一定存在负环,因为一个点被加入队列两次,意味着这个点在BF 中被更新两次,那么这个点如果加入队列的次数大于 n-1 次,那么则存在负环。
    代码示例 :
    const int inf = 1 << 29;
    int n,m, w;
    struct ed
    {
        int to, cost;
        ed(int _t = 0, int _c = 0):to(_t),cost(_c){}
    };
    vector<ed>edge[505];
    bool vis[505];
    int d[505];
    int cnt[505];
    
    bool spfa(){
        queue<int>que;
        memset(cnt, 0, sizeof(cnt));
        memset(vis, false, sizeof(vis));
        for(int i = 1; i <= 500; i++) d[i] = inf;
        d[1] = 0;
        cnt[1] = 1;    
        que.push(1);
        
        while(!que.empty()){
            int u = que.front();
            que.pop();
            vis[u] = false;
            for(int i = 0; i < edge[u].size(); i++){
                int to = edge[u][i].to;
                int cost = edge[u][i].cost; 
                if (d[u]+cost < d[to]){
                    d[to] = d[u]+cost;
                    if (!vis[to]){
                        vis[to] = true;
                        que.push(to);
                        cnt[to]++;
                        if (cnt[to] > n) return true;    
                    }  
                }
            }
        }
        return false;
    }
    
    int main() {
        int t;
        int a, b, c;
        
        cin >>t;
        while(t--){
            scanf("%d%d%d", &n, &m, &w);
            for(int i = 1; i <= 500; i++) edge[i].clear();
            for(int i = 1; i <= m; i++){
                scanf("%d%d%d", &a, &b, &c);
                edge[a].push_back(ed(b,c));    
                edge[b].push_back(ed(a,c));    
            }
            for(int i = 1; i <= w; i++){
                scanf("%d%d%d", &a, &b, &c);
                edge[a].push_back(ed(b, -c));
            }
            if (spfa()) printf("YES
    ");
            else printf("NO
    ");
        }
    
        return 0;
    }
    
      
    东北日出西边雨 道是无情却有情
  • 相关阅读:
    2017年3月10号课堂笔记
    2017年3月8号课堂笔记
    2017年3月6号课堂笔记
    2017年3月3号课堂笔记
    第7讲:设计PE型病毒2
    第6讲:设计PE型病毒1
    第5讲:HOOK 任务管理器 第2种方法注入
    第4讲:HOOK 任务管理器 无法结束进程
    第3讲:导入表的定位和读取操作
    第2讲:搜索PEB结构获取kernel32.dll的基址暴力搜索内存空间获得 Api 的线性地址
  • 原文地址:https://www.cnblogs.com/ccut-ry/p/7786661.html
Copyright © 2011-2022 走看看