zoukankan      html  css  js  c++  java
  • 主席树 查询某区间比指定的数大的个数

    One day Polycarp decided to rewatch his absolute favourite episode of well-known TV series "Tufurama". He was pretty surprised when he got results only for season 7 episode 3 with his search query of "Watch Tufurama season 3 episode 7 online full hd free". This got Polycarp confused — what if he decides to rewatch the entire series someday and won't be able to find the right episodes to watch? Polycarp now wants to count the number of times he will be forced to search for an episode using some different method.

    TV series have n seasons (numbered 1 through n), the i-th season has ai episodes (numbered 1 through ai). Polycarp thinks that if for some pair of integers x and y (x < y) exist both season x episode y and season y episode x then one of these search queries will include the wrong results. Help Polycarp to calculate the number of such pairs!

    Input

    The first line contains one integer n (1  ≤ n  ≤  2·105) — the number of seasons.

    The second line contains n integers separated by space a1, a2, ..., an (1 ≤ ai ≤ 109) — number of episodes in each season.

    Output

    Print one integer — the number of pairs x and y (x < y) such that there exist both season x episode y and season y episode x.

    Examples
    Input
    Copy
    5
    1 2 3 4 5
    Output
    Copy
    0
    Input
    Copy
    3
    8 12 7
    Output
    Copy
    3
    Input
    Copy
    3
    3 2 1
    Output
    Copy
    2
    Note

    Possible pairs in the second example:

    1. x = 1, y = 2 (season 1 episode 2 season 2 episode 1);
    2. x = 2, y = 3 (season 2 episode 3 season 3 episode 2);
    3. x = 1, y = 3 (season 1 episode 3 season 3 episode 1).

    In the third example:

    1. x = 1, y = 2 (season 1 episode 2 season 2 episode 1);
    2. x = 1, y = 3 (season 1 episode 3 season 3 episode 1).

     题意 : 询问存在多少个点对,使得 a[j] >= i && a[i] >= j 

    两种方法 :

    一 : 主席树,这个比较好想,首先我们比较容易保证的条件是 a[j] >= i , 然后对于这个区间我们去寻找有多少个点是 a[i] >= j, 那么问题不就转变成求一个指定区间比一个指定的数大的个数。

    代码示例 :

    #define ll long long
    const ll maxn = 2e5+5;
    const ll mod = 1e9+7;
    const double eps = 1e-9;
    const double pi = acos(-1.0);
    const ll inf = 0x3f3f3f3f;
    
    ll n;
    ll a[maxn];
    ll root[maxn];
    ll cnt = 1;
    struct node
    {
        ll l, r;
        ll sum;
    }t[maxn*20];
    void init(){
        root[0] = 0;
        t[0].l = t[0].r = t[0].sum = 0;
    }
    
    void update(ll num, ll &rt, ll l, ll r){
        t[cnt++] = t[rt];
        rt = cnt-1;
        t[rt].sum++;
        if (l == r) return;
        ll m = (l+r)>>1;
        if (num <= m) update(num, t[rt].l, l, m);
        else update(num, t[rt].r, m+1, r);
    }
    
    ll sum = 0;
    void query(ll i, ll j, ll k, ll l, ll r){ 
        if (l >= k) {
            sum += t[j].sum-t[i].sum;
            return;
        } 
        ll m = (l+r)>>1;
        if (k <= m) query(t[i].l, t[j].l, k, l, m);
        query(t[i].r, t[j].r, k, m+1, r);
        
    }
    
    int main() {
        //freopen("in.txt", "r", stdin);
        //freopen("out.txt", "w", stdout);
        cin >> n;
        for(ll i = 1; i <= n; i++){
            scanf("%lld", &a[i]);
            a[i] = min(a[i], n);
        }
        for(ll i = 1; i <= n; i++){
            root[i] = root[i-1];
            update(a[i], root[i], 1, n);
        }
        
        for(ll i = 1; i <= n; i++){
            ll l = i+1, r = a[i];
            if (l > r) continue;
            query(root[l-1], root[r], i, 1, n);
        }
        printf("%lld
    ", sum);
        return 0;
    }
    

     方法二 : 树状数组

     对于这个问题我是只需要满足两个条件就可以的,第一个条件 a[j] >= i 是很好满足的,并且也可以找到 a[j] 的范围,假想一下,如果找到的这个范围内的数都是符合题意的,那么对于我们计算起来就很方便了,因此我们就朝着这个方向去实现,对于当前位置的 i ,我们查询 1 - a[j] 范围,查询完后我们删除所有下标为 i 位置的数就好了,因为 i 是递增的,在以后永远都是不符合要求的。利用树状数组去维护就可以。

    代码示例 :

    #define ll long long
    const ll maxn = 2e5+5;
    const ll mod = 1e9+7;
    const double eps = 1e-9;
    const double pi = acos(-1.0);
    const ll inf = 0x3f3f3f3f;
    
    ll a[maxn], c[maxn];
    ll n;
    vector<ll>ve[maxn];
    
    ll lower(ll x) {return x&(-x);}
    void add(ll x, ll pt){
        for(ll i = x; i <= n; i += lower(i)) c[i] += pt;
    }
    
    ll query(ll x){
        ll sum = 0;
        for(ll i = x; i >= 1; i -= lower(i)) sum += c[i];
        return sum;
    }
    
    int main() {
        //freopen("in.txt", "r", stdin);
        //freopen("out.txt", "w", stdout);
        cin >> n;
        for(ll i = 1; i <= n; i++){
            scanf("%lld", &a[i]);
            a[i] = min(a[i], n);
            add(i, 1ll);
            ve[a[i]].push_back(i);
        }
        ll sum = 0;
        for(ll i = 1; i <= n; i++){ 
            sum += query(a[i]);
            for(ll j = 0; j < ve[i].size(); j++){
                add(ve[i][j], -1ll);
            }
            if (a[i] >= i) sum--;
            //printf("i = %lld sum  %lld
    ", i, sum);  
        }
        printf("%lld
    ", sum>>1); 
        return 0;
    }
    

     形式二 :

    #define ll long long
    const ll maxn = 2e5+5;
    const ll mod = 1e9+7;
    const double eps = 1e-9;
    const double pi = acos(-1.0);
    const ll inf = 0x3f3f3f3f;
    
    ll a[maxn], c[maxn];
    ll n;
    vector<ll>ve[maxn];
    
    ll lower(ll x) {return x&(-x);}
    void add(ll x, ll pt){
        for(ll i = x; i <= n; i += lower(i)) c[i] += pt;
    }
    
    ll query(ll x){
        ll sum = 0;
        for(ll i = x; i >= 1; i -= lower(i)) sum += c[i];
        return sum;
    }
    
    int main() {
        //freopen("in.txt", "r", stdin);
        //freopen("out.txt", "w", stdout);
        cin >> n;
        for(ll i = 1; i <= n; i++){
            scanf("%lld", &a[i]);
            a[i] = min(a[i], n);
            add(i, 1);
            ve[a[i]].push_back(i);
        }
        ll sum = 0;
        for(ll i = 1; i <= n; i++){ 
            if (i +1 <= a[i]) sum += query(a[i])-query(i);
            
            for(ll j = 0; j < ve[i].size(); j++){
                add(ve[i][j], -1);
            } 
        }
        printf("%lld
    ", sum); 
        return 0;
    }
    
    东北日出西边雨 道是无情却有情
  • 相关阅读:
    原生JavaScript封装insertAfter方法
    SQL截取最后一个由字符分隔的字符串
    给标识列显示的添加数据(IDENTITY_INSERT 为 ON)
    C#保留两位小数,四舍五入的函数及使用方法
    UEditor1.4.3上传图片提示上传失败
    SQL Server 2005公用表表达式(CTE)
    UEditor 粘贴表格时报错导致无法粘贴的解决方法
    事件监听机制
    数组中的趣味题(一)
    redis的工具类封装
  • 原文地址:https://www.cnblogs.com/ccut-ry/p/8824518.html
Copyright © 2011-2022 走看看