zoukankan      html  css  js  c++  java
  • numpy.mean

    http://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html

    numpy.mean(aaxis=Nonedtype=Noneout=Nonekeepdims=False)[source]

    Compute the arithmetic mean along the specified axis.

    Returns the average of the array elements. The average is taken over the flattened array by default, otherwise over the specified axis. float64 intermediate and return values are used for integer inputs.

    Parameters:

    a : array_like

    Array containing numbers whose mean is desired. If a is not an array, a conversion is attempted.

    axis : None or int or tuple of ints, optional

    Axis or axes along which the means are computed. The default is to compute the mean of the flattened array.

    If this is a tuple of ints, a mean is performed over multiple axes, instead of a single axis or all the axes as before.

    dtype : data-type, optional

    Type to use in computing the mean. For integer inputs, the default is float64; for floating point inputs, it is the same as the input dtype.

    out : ndarray, optional

    Alternate output array in which to place the result. The default isNone; if provided, it must have the same shape as the expected output, but the type will be cast if necessary. See doc.ufuncs for details.

    keepdims : bool, optional

    If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original arr.

    Returns:

    m : ndarray, see dtype parameter above

    If out=None, returns a new array containing the mean values, otherwise a reference to the output array is returned.

    See also

    average
    Weighted average

    stdvarnanmeannanstdnanvar

    Notes

    The arithmetic mean is the sum of the elements along the axis divided by the number of elements.

    Note that for floating-point input, the mean is computed using the same precision the input has. Depending on the input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a higher-precision accumulator using the dtype keyword can alleviate this issue.

    Examples

    >>>
    >>> a = np.array([[1, 2], [3, 4]])
    >>> np.mean(a)
    2.5
    >>> np.mean(a, axis=0)
    array([ 2.,  3.])
    >>> np.mean(a, axis=1)
    array([ 1.5,  3.5])
    

    In single precision, mean can be inaccurate:

    >>>
    >>> a = np.zeros((2, 512*512), dtype=np.float32)
    >>> a[0, :] = 1.0
    >>> a[1, :] = 0.1
    >>> np.mean(a)
    0.546875
    

    Computing the mean in float64 is more accurate:

    >>>
    >>> np.mean(a, dtype=np.float64)
    0.55000000074505806
  • 相关阅读:
    Django 数据导入和导出(数据库的迁移方法)
    【转】JSON Web Token 入门教程
    【转】详解drf中的ModelViewSet
    【转】Django 多数据库联用
    【转】django.contrib.auth之authenticate函数源码分析
    【转】Django-rest-framework
    django 自带用户认证系统 以及 自定义用户认证系统
    DRF 中接口设计,接口参数校验问题总结
    my read wood / zelkova / elm
    db CouchDB 2.1.2
  • 原文地址:https://www.cnblogs.com/cdsj/p/5176259.html
Copyright © 2011-2022 走看看