zoukankan      html  css  js  c++  java
  • Exercise:Sparse Autoencoder

    斯坦福deep learning教程中的自稀疏编码器的练习,主要是参考了   http://www.cnblogs.com/tornadomeet/archive/2013/03/20/2970724.html,没有参考肯定编不出来。。。Σ( ° △ °|||)︴  也当自己理解了一下

    这里的自稀疏编码器,练习上规定是64个输入节点,25个隐藏层节点(我实验中只有20个),输出层也是64个节点,一共有10000个训练样本

    Autoencoder636.png

    具体步骤:

    首先在页面上下载sparseae_exercise.zip 

    Step 1:构建训练集

    要求在10张图片(图片数据存储在IMAGES中)中随机的选取一张图片,在再这张图片中随机的选取10000个像素点,最终构建一个64*10000的像素矩阵。从一张图片中选取10000个像素点的好处是,只有copy一次IMAGES,速度更快,但是要注意每张图片的像素是512*512的,所以随机选取像素点最好是分行和列各选取100,最终组合成100*100,这样不容易导致越界。验证step 1可以运行train.m中的第一步,结果图如下:

    (只展示了200个sample,所以有4个缺口)

    需要自行编写sampleIMAGES中的部分code

    function patches = sampleIMAGES()
    % sampleIMAGES
    % Returns 10000 patches for training
    
    load IMAGES;    % load images from disk 
    
    patchsize = 8;  % we'll use 8x8 patches 
    numpatches = 10000;
    
    % Initialize patches with zeros.  Your code will fill in this matrix--one
    % column per patch, 10000 columns. 
    patches = zeros(patchsize*patchsize, numpatches);
    
    %% ---------- YOUR CODE HERE --------------------------------------
    %  Instructions: Fill in the variable called "patches" using data 
    %  from IMAGES.  
    %  
    %  IMAGES is a 3D array containing 10 images
    %  For instance, IMAGES(:,:,6) is a 512x512 array containing the 6th image,
    %  and you can type "imagesc(IMAGES(:,:,6)), colormap gray;" to visualize
    %  it. (The contrast on these images look a bit off because they have
    %  been preprocessed using using "whitening."  See the lecture notes for
    %  more details.) As a second example, IMAGES(21:30,21:30,1) is an image
    %  patch corresponding to the pixels in the block (21,21) to (30,30) of
    %  Image 1
    
    
    imageNum = randi([1,10]);     %随机的选择一张图片
    [rowNum colNum] = size(IMAGES(:,:,imageNum));
    xPos = randperm(rowNum-patchsize+1,100);
    yPos = randperm(colNum-patchsize+1,100);
    for ii = 1:100                %在图片中选取100*100个像素点
        for jj = 1:100
            patchNum = (ii-1)*100 + jj;
            patches(:,patchNum) = reshape(IMAGES(xPos(ii):xPos(ii)+7,yPos(jj):yPos(jj)+7,...
                                          imageNum),64,1);
        end
    end
    
    
    
    %% ---------------------------------------------------------------
    % For the autoencoder to work well we need to normalize the data
    % Specifically, since the output of the network is bounded between [0,1]
    % (due to the sigmoid activation function), we have to make sure 
    % the range of pixel values is also bounded between [0,1]
    patches = normalizeData(patches);
    
    end
    
    
    %% ---------------------------------------------------------------
    function patches = normalizeData(patches)
    
    % Squash data to [0.1, 0.9] since we use sigmoid as the activation
    % function in the output layer
    
    % Remove DC (mean of images). 
    patches = bsxfun(@minus, patches, mean(patches));
    
    % Truncate to +/-3 standard deviations and scale to -1 to 1
    pstd = 3 * std(patches(:));
    patches = max(min(patches, pstd), -pstd) / pstd;
    
    % Rescale from [-1,1] to [0.1,0.9]
    patches = (patches + 1) * 0.4 + 0.1;
    
    end

    Step 2:求解自稀疏编码器的参数

    这一步就是要运用BP算法求解NN中各层的W,b(W1,W2,b1,b2)参数。 Backpropagation Algorithm算法在教程的第二节中有介绍,但要注意的是自稀疏编码器的误差函数除了有参数的正则化项,还有稀疏性规则项,BP算法推导公式中要加上,这里需要自行编写sparseAutoencoderCost.m

    function [cost,grad] = sparseAutoencoderCost(theta, visibleSize, hiddenSize, ...
                                                 lambda, sparsityParam, beta, data)
    
    % visibleSize: the number of input units (probably 64) 
    % hiddenSize: the number of hidden units (probably 25) 
    % lambda: weight decay parameter
    % sparsityParam: The desired average activation for the hidden units (denoted in the lecture
    %                           notes by the greek alphabet rho, which looks like a lower-case "p").
    % beta: weight of sparsity penalty term
    % data: Our 64x10000 matrix containing the training data.  So, data(:,i) is the i-th training example. 
      
    % The input theta is a vector (because minFunc expects the parameters to be a vector). 
    % We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this 
    % follows the notation convention of the lecture notes. 
    
    W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);
    W2 = reshape(theta(hiddenSize*visibleSize+1:2*hiddenSize*visibleSize), visibleSize, hiddenSize);
    b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);
    b2 = theta(2*hiddenSize*visibleSize+hiddenSize+1:end);
    
    % Cost and gradient variables (your code needs to compute these values). 
    % Here, we initialize them to zeros. 
    cost = 0;
    W1grad = zeros(size(W1)); 
    W2grad = zeros(size(W2));
    b1grad = zeros(size(b1)); 
    b2grad = zeros(size(b2));
    
    %% ---------- YOUR CODE HERE --------------------------------------
    %  Instructions: Compute the cost/optimization objective J_sparse(W,b) for the Sparse Autoencoder,
    %                and the corresponding gradients W1grad, W2grad, b1grad, b2grad.
    %
    % W1grad, W2grad, b1grad and b2grad should be computed using backpropagation.
    % Note that W1grad has the same dimensions as W1, b1grad has the same dimensions
    % as b1, etc.  Your code should set W1grad to be the partial derivative of J_sparse(W,b) with
    % respect to W1.  I.e., W1grad(i,j) should be the partial derivative of J_sparse(W,b) 
    % with respect to the input parameter W1(i,j).  Thus, W1grad should be equal to the term 
    % [(1/m) Delta W^{(1)} + lambda W^{(1)}] in the last block of pseudo-code in Section 2.2 
    % of the lecture notes (and similarly for W2grad, b1grad, b2grad).
    % 
    % Stated differently, if we were using batch gradient descent to optimize the parameters,
    % the gradient descent update to W1 would be W1 := W1 - alpha * W1grad, and similarly for W2, b1, b2. 
    % 
    
    Jcost = 0;%直接误差
    Jweight = 0;%权值惩罚
    Jsparse = 0;%稀疏性惩罚
    [n m] = size(data);%m为样本的个数,n为样本的特征数
    
    %前向算法计算各神经网络节点的线性组合值和active值
    z2 = W1*data+repmat(b1,1,m);%注意这里一定要将b1向量复制扩展成m列的矩阵
    a2 = sigmoid(z2);
    z3 = W2*a2+repmat(b2,1,m);
    a3 = sigmoid(z3);
    
    
    % 计算预测产生的误差
    Jcost = (0.5/m)*sum(sum((a3-data).^2));
    
    %计算权值惩罚项
    Jweight = (1/2)*(sum(sum(W1.^2))+sum(sum(W2.^2)));
    
    %计算稀释性规则项
    rho = (1/m).*sum(a2,2)  ;%求出第一个隐含层的平均值向量
    Jsparse = sum(sparsityParam.*log(sparsityParam./rho)+ ...
            (1-sparsityParam).*log((1-sparsityParam)./(1-rho)));
    
    %损失函数的总表达式
    cost = Jcost+lambda*Jweight+beta*Jsparse;
    
    %反向算法求出每个节点的误差值
    d3 = -(data-a3).*(a3.*(1-a3));
    sterm = beta*(-sparsityParam./rho+(1-sparsityParam)./(1-rho));%因为加入了稀疏规则项,所以
                                                                 %计算偏导时需要引入该项 
    d2 = (W2'*d3+repmat(sterm,1,m)).*(a2.*(1-a2)); 
    
    %计算W1grad 
    W1grad = W1grad+d2*data';
    W1grad = (1/m)*W1grad+lambda*W1;
    
    %计算W2grad  
    W2grad = W2grad+d3*a2';
    W2grad = (1/m).*W2grad+lambda*W2;
    
    %计算b1grad 
    b1grad = b1grad+sum(d2,2);
    b1grad = (1/m)*b1grad;%注意b的偏导是一个向量,所以这里应该把每一行的值累加起来
    
    %计算b2grad 
    b2grad = b2grad+sum(d3,2);
    b2grad = (1/m)*b2grad;
    
    
    %-------------------------------------------------------------------
    % After computing the cost and gradient, we will convert the gradients back
    % to a vector format (suitable for minFunc).  Specifically, we will unroll
    % your gradient matrices into a vector.
    
    grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)];
    
    end
    
    %-------------------------------------------------------------------
    % Here's an implementation of the sigmoid function, which you may find useful
    % in your computation of the costs and the gradients.  This inputs a (row or
    % column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). 
    
    function sigm = sigmoid(x)        % 定义sigmoid函数
      
        sigm = 1 ./ (1 + exp(-x));
    end

    Step 3:求解的 梯度检验

    验证梯度下降是否正确,这个在教程第三节也有介绍,比较简单,在computeNumericalGradient.m中返回梯度检验后的值即可,computeNumericalGradient.m是在checkNumericalGradient.m中调用的,而checkNumericalGradient.m已经给出,不需要我们自己编写。

    function numgrad = computeNumericalGradient(J, theta)
    % numgrad = computeNumericalGradient(J, theta)
    % theta: a vector of parameters
    % J: a function that outputs a real-number. Calling y = J(theta) will return the
    % function value at theta. 
      
    % Initialize numgrad with zeros
    numgrad = zeros(size(theta));
    
    %% ---------- YOUR CODE HERE --------------------------------------
    % Instructions: 
    % Implement numerical gradient checking, and return the result in numgrad.  
    % (See Section 2.3 of the lecture notes.)
    % You should write code so that numgrad(i) is (the numerical approximation to) the 
    % partial derivative of J with respect to the i-th input argument, evaluated at theta.  
    % I.e., numgrad(i) should be the (approximately) the partial derivative of J with 
    % respect to theta(i).
    %                
    % Hint: You will probably want to compute the elements of numgrad one at a time. 
    
    epsilon = 1e-4;
    n = size(theta,1);
    E = eye(n,1);
    for i = 1:n
       E(i) = 1; delta
    = E*epsilon; numgrad(i) = (J(theta+delta)-J(theta-delta))/(epsilon*2.0);
       E(i) = 0; end
    %% --------------------------------------------------------------- end

    Step 4:训练自稀疏编码器

    整个训练过程使用的是L-BFGS求解,比教程中介绍的主要介绍批量SGD要快很多,具体原理我也不知道,而且训练过程已经给出,这一段不需要我们自己编写

    Step 5:输出可视化结果

    训练结束后,输出训练得到的权重矩阵W1,结果同时也会保存在weights.jpg中,这一段也不需要我们编写( 第一次)

    结果图如下:

    (感觉自己训练出来的这个没有标准的那么明显的线条,看就了还有点类似错误示例的第3个,不过重新仔细看还是有线条感的,可能是因为隐藏层只有20个,训练的也没有25个的彻底)

    另外,查了一下内存不足的解决方法,据说在matlab命令行输入pack,可以释放一些内存。但是我觉得还是终究治标不治本,最好的方法还是升级64位操作系统,去添加内存条吧~

    剩下的.m文件都不需要我们自己编写(修改隐藏层的节点数在train.m中),不过也顺带附上吧

    function [] = checkNumericalGradient()
    % This code can be used to check your numerical gradient implementation 
    % in computeNumericalGradient.m
    % It analytically evaluates the gradient of a very simple function called
    % simpleQuadraticFunction (see below) and compares the result with your numerical
    % solution. Your numerical gradient implementation is incorrect if
    % your numerical solution deviates too much from the analytical solution.
      
    % Evaluate the function and gradient at x = [4; 10]; (Here, x is a 2d vector.)
    x = [4; 10];
    [value, grad] = simpleQuadraticFunction(x);
    
    % Use your code to numerically compute the gradient of simpleQuadraticFunction at x.
    % (The notation "@simpleQuadraticFunction" denotes a pointer to a function.)
    numgrad = computeNumericalGradient(@simpleQuadraticFunction, x);
    
    % Visually examine the two gradient computations.  The two columns
    % you get should be very similar. 
    disp([numgrad grad]);
    fprintf('The above two columns you get should be very similar.
    (Left-Your Numerical Gradient, Right-Analytical Gradient)
    
    ');
    
    % Evaluate the norm of the difference between two solutions.  
    % If you have a correct implementation, and assuming you used EPSILON = 0.0001 
    % in computeNumericalGradient.m, then diff below should be 2.1452e-12 
    diff = norm(numgrad-grad)/norm(numgrad+grad);
    disp(diff); 
    fprintf('Norm of the difference between numerical and analytical gradient (should be < 1e-9)
    
    ');
    end
    
    
      
    function [value,grad] = simpleQuadraticFunction(x)
    % this function accepts a 2D vector as input. 
    % Its outputs are:
    %   value: h(x1, x2) = x1^2 + 3*x1*x2
    %   grad: A 2x1 vector that gives the partial derivatives of h with respect to x1 and x2 
    % Note that when we pass @simpleQuadraticFunction(x) to computeNumericalGradients, we're assuming
    % that computeNumericalGradients will use only the first returned value of this function.
    
    value = x(1)^2 + 3*x(1)*x(2);
    
    grad = zeros(2, 1);
    grad(1)  = 2*x(1) + 3*x(2);
    grad(2)  = 3*x(1);
    
    end
    checkNumericalGradient.m
    function theta = initializeParameters(hiddenSize, visibleSize)
    
    %% Initialize parameters randomly based on layer sizes.
    r  = sqrt(6) / sqrt(hiddenSize+visibleSize+1);   % we'll choose weights uniformly from the interval [-r, r]
    W1 = rand(hiddenSize, visibleSize) * 2 * r - r;
    W2 = rand(visibleSize, hiddenSize) * 2 * r - r;
    
    b1 = zeros(hiddenSize, 1);
    b2 = zeros(visibleSize, 1);
    
    % Convert weights and bias gradients to the vector form.
    % This step will "unroll" (flatten and concatenate together) all 
    % your parameters into a vector, which can then be used with minFunc. 
    theta = [W1(:) ; W2(:) ; b1(:) ; b2(:)];
    
    
    end
    initializeParameter
    function [h, array] = display_network(A, opt_normalize, opt_graycolor, cols, opt_colmajor)
    
    % This function visualizes filters in matrix A. Each column of A is a
    % filter. We will reshape each column into a square image and visualizes
    % on each cell of the visualization panel. 
    % All other parameters are optional, usually you do not need to worry
    % about it.
    % opt_normalize: whether we need to normalize the filter so that all of
    % them can have similar contrast. Default value is true.
    % opt_graycolor: whether we use gray as the heat map. Default is true.
    % cols: how many columns are there in the display. Default value is the
    % squareroot of the number of columns in A.
    % opt_colmajor: you can switch convention to row major for A. In that
    % case, each row of A is a filter. Default value is false.
    warning off all
    
    if ~exist('opt_normalize', 'var') || isempty(opt_normalize)
        opt_normalize= true;
    end
    
    if ~exist('opt_graycolor', 'var') || isempty(opt_graycolor)
        opt_graycolor= true;
    end
    
    if ~exist('opt_colmajor', 'var') || isempty(opt_colmajor)
        opt_colmajor = false;
    end
    
    % rescale
    A = A - mean(A(:));
    
    if opt_graycolor, colormap(gray); end
    
    % compute rows, cols
    [L M]=size(A);
    sz=sqrt(L);
    buf=1;
    if ~exist('cols', 'var')
        if floor(sqrt(M))^2 ~= M
            n=ceil(sqrt(M));
            while mod(M, n)~=0 && n<1.2*sqrt(M), n=n+1; end
            m=ceil(M/n);
        else
            n=sqrt(M);
            m=n;
        end
    else
        n = cols;
        m = ceil(M/n);
    end
    
    
    array=-ones(buf+m*(sz+buf),buf+n*(sz+buf));
    
    if ~opt_graycolor
        array = 0.1.* array;
    end
    
    
    if ~opt_colmajor
        k=1;
        for i=1:m
            for j=1:n
                if k>M, 
                    continue; 
                end
                clim=max(abs(A(:,k)));
                if opt_normalize
                    array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz)/clim;
                else
                    array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz)/max(abs(A(:)));
                end
                k=k+1;
            end
        end
    else
        k=1;
        for j=1:n
            for i=1:m
                if k>M, 
                    continue; 
                end
                clim=max(abs(A(:,k)));
                if opt_normalize
                    array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz)/clim;
                else
                    array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz);
                end
                k=k+1;
            end
        end
    end
    
    if opt_graycolor
        h=imagesc(array,'EraseMode','none',[-1 1]);
    else
        h=imagesc(array,'EraseMode','none',[-1 1]);
    end
    axis image off
    
    drawnow;
    
    warning on all
    display_network

  • 相关阅读:
    第五周作业
    画图实例:一个计算机商店的基于Wed的订单处理系统的DFD图和ER图
    为什么要进行需求分析?通常对软件系统有哪些需求?
    面向过程(或者叫结构化)分析方法与面向对象分析方法到底区别在哪里
    几大开发模式的区别与联系
    说说我的困惑
    Python单元测试——深入理解unittest
    Devexpress 自定义下拉列表
    Devexpress TextEdit设置文本只能输入数字
    jetbain软件授权码
  • 原文地址:https://www.cnblogs.com/celia01/p/4522367.html
Copyright © 2011-2022 走看看