敲了一份NTT模板,在很多时候答案需要取余的时候NTT有较好的的效果.
#include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<ctime> #include<string> #include<iomanip> #include<algorithm> #include<map> using namespace std; #define LL long long #define FILE "dealing" #define up(i,j,n) for(LL i=j;i<=n;++i) #define db double #define ull unsigned long long #define eps 1e-10 #define pii pair<LL,LL> LL read(){ LL x=0,f=1,ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();} return f*x; } const LL maxn=802200,maxm=20000,mod=(LL)(1e9+7+0.1),inf=(LL)(1e15); template<class T>bool cmax(T& a,T b){return a<b?a=b,true:false;} template<class T>bool cmin(T& a,T b){return a>b?a=b,true:false;} LL n,m; namespace NTT{ const LL maxn=1000400; LL r,P,H=0,L=1,R[maxn],w[maxn]; LL a[maxn],b[maxn]; LL fast(LL a,LL b){ LL ans=1; for(;b;b>>=1,a=a*a%P) if(b&1)ans=ans*a%P; return ans; } LL prime[maxn],tail=0,B[maxn],limit=(LL)(1e6+1); void getprime(){ up(i,2,limit){ if(!B[i])prime[++tail]=i; for(LL j=1;j<=tail&&prime[j]*i<=limit;j++){ B[i*prime[j]]=1; if(i%prime[j]==0)break; } } } LL q[maxn],head=0; void getr(LL mod){ if(mod==998244353){r=3;P=mod;return;} getprime(); P=mod;LL N=mod-1,D=P-1; for(LL i=1;prime[i]*prime[i]<=N;i++){ if(D==1)break; if(D%prime[i]==0)head++,q[head]=prime[i]; while(D%prime[i]==0) D/=prime[i]; } if(D!=1)q[++head]=D; bool flag=0; up(i,2,N){ flag=0; up(j,1,head)if(fast(i,(mod-1)/q[j])==1){flag=1;break;} if(!flag){ r=i; break; } } } void NTT(LL* a,bool flag){ up(i,0,n)if(i<R[i])swap(a[i],a[R[i]]); for(LL len=2;len<=L;len<<=1){ LL g=fast(r,(P-1)/len),l=len>>1; if(flag)g=fast(g,P-2); up(i,1,l)w[i]=w[i-1]*g%P; for(LL st=0;st<L;st+=len){ for(LL k=0;k<l;k++){ LL x=a[st+k],y=w[k]*a[st+k+l]%P; a[st+k]=(x+y)%P;a[st+k+l]=(x-y+P)%P; } } } if(flag){ LL inv=fast(L,P-2); up(i,0,L-1)a[i]=a[i]*inv%P; } } LL solve(LL* c,LL* d,LL n,LL m,LL* ch){ up(i,0,n-1)a[i]=c[i]; up(i,0,m-1)b[i]=d[i]; for(H=0,L=1;L<n+m-1;H++)L<<=1; w[0]=1; up(i,n,L)a[i]=0; up(i,m,L)b[i]=0; up(i,0,L)R[i]=(R[i>>1]>>1)|((i&1)<<H-1); NTT(a,0); NTT(b,0); up(i,0,L)a[i]=a[i]*b[i]%P; NTT(a,1); up(i,0,n+m-2)ch[i+1]=a[i]; } }; LL a[maxn],b[maxn],ch[maxn]; int main(){ freopen(FILE".in","r",stdin); freopen(FILE".out","w",stdout); n=read();m=read(); n++,m++; up(i,0,n-1)a[i]=read(); up(i,0,m-1)b[i]=read(); NTT::getr(998244353LL); NTT::solve(a,b,n,m,ch); up(i,1,n+m-1)printf("%lld ",ch[i]); return 0; }