数论模板集合.
用到了快速乘,快速幂,exgcd,Pollard_Rho因数分解.
这题乘法各种爆long long,只要有一个地方不加快速乘就wa或者死循环.
#include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> #include<string> #include<cmath> #include<ctime> #include<algorithm> #include<map> #include<set> #include<queue> #include<iomanip> using namespace std; #define ll long long #define db double #define up(i,j,n) for(ll i=j;i<=n;i++) #define pii pair<ll,ll> #define uint unsigned ll #define FILE "dealing" ll read(){ ll x=0,f=1,ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();} return x*f; } template<class T> bool cmax(T& a,T b){return a<b?a=b,true:false;} template<class T> bool cmin(T& a,T b){return a>b?a=b,true:false;} const ll maxn=1010000; ll p,q,c,e,d,n,N,r; void exgcd(ll a,ll b,ll& d,ll& x,ll& y){ if(b==0){x=1;y=0;d=a;return;} exgcd(b,a%b,d,x,y); ll t=x; x=y; y=t-a/b*y; } inline ll mul(ll x,ll y,ll mod){ ll tmp=(x*y-(ll)((long double)x/mod*y+1.0e-8)*mod); return tmp<0 ? tmp+mod : tmp; } ll gcd(ll a,ll b){return b==0?a:gcd(b,a%b);} void pholl(ll n){ ll c=rand()+3; while(true){ ll x1=1,x2=1,k=2,i=1; while(true){ x1=(mul(x1,x1,n)+c)%n; ll d=gcd(abs(x1-x2),n); if(d>1&&d<n){ p=d,q=n/d; return; } if(x1==x2)break; if(++i==k)k<<=1,x2=x1; } c++; } } ll fast(ll a,ll b,ll mod){ ll ans=1; for(;b;b>>=1,a=mul(a,a,mod))if(b&1)ans=mul(ans,a,mod); return ans; } int main(){ freopen(FILE".in","r",stdin); freopen(FILE".out","w",stdout); e=read(),N=read(),c=read(); pholl(N); r=(p-1)*(q-1); ll w,m; exgcd(e,r,w,d,m); d=(d%r+r)%r; n=fast(c,d,N); printf("%lld %lld ",d,n); return 0; }