题意:给定一个立体的图形,上面是圆柱,下面是圆台,圆柱的底面半径和圆台的上半径相等,然后体积的V时,问这个图形的表面积最小可以是多少。(不算上表面)。一开始拿到题以为可以YY出一个结果,就认为它是圆锥,赛后才知道原来要三分三分再三分。 就是对上下体积三分,对上半径和下半径三分。至于为什么是凸的貌似也不怎么好想,但是我后来确实发现单纯的圆锥肯定取不到最大值,这题就当作是学习三分的技巧啦- -0
#pragma warning(disable:4996) #include<iostream> #include<cstdio> #include<cstring> #include<string> #include<algorithm> #include<vector> #include<cmath> #define ll long long #define eps 1e-5 using namespace std; double r1, r2, V; double v1, v2; double pi = acos(-1.0); int dcmp(double x) { return (x > eps) - (x < -eps); } double cal(double x) { r2 = x; double H = v1 / (pi*r1*r1); double h = 3 * v2 / (pi*r1*r1 + pi*r2*r2 + pi*r1*r2); double ans = 0; double mother = sqrt((r2 - r1)*(r2 - r1) + h*h); ans = pi*(r1 + r2)*mother + 2 * pi*r1*H + pi*r2*r2; return ans; } double lr(double x) { v1 = x; v2 = V - x; double l = 0, r = r1; while (dcmp(r - l)>0) { double m1 = l + (r - l) / 3; double m2 = l + 2 * (r - l) / 3; double x1 = cal(m1); double x2 = cal(m2); if (x1 < x2) r = m2; else l = m1; } return cal(l); } double vol(double x) { r1 = x; double l = 0, r = V; while (dcmp(r-l)>0) { double m1 = l + (r - l) / 3; double m2 = l + 2 * (r - l) / 3; double x1 = lr(m1),x2 = lr(m2); if (x1 < x2) r = m2; else l = m1; } return lr(l); } double solve() { double l = 0, r = 10*V; while (dcmp(r - l)>0){ double m1 = l + (r - l) / 3; double m2 = l + 2 * (r - l) / 3; double x1 = vol(m1), x2 = vol(m2); if (x1 < x2) r = m2; else l = m1; } return vol(l); } int main() { while (cin >> V) { double ans = solve(); printf("%.6lf ", ans); } return 0; }