zoukankan      html  css  js  c++  java
  • 周总结 4.27-5.3

    服装图像分类

    一、前期工作
    我的环境:

    语言环境:Python3.6.5
    编译器:jupyter notebook
    深度学习环境:TensorFlow2
    来自专栏:【深度学习100例】

    1. 设置GPU
    如果使用的是CPU可以忽略这步

    import tensorflow as tf
    gpus = tf.config.list_physical_devices("GPU")

    if gpus:
    gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")

    2. 导入数据
    import tensorflow as tf
    from tensorflow.keras import datasets, layers, models
    import matplotlib.pyplot as plt

    (train_images, train_labels), (test_images, test_labels) = datasets.fashion_mnist.load_data()

    3. 归一化
    # 将像素的值标准化至0到1的区间内。
    train_images, test_images = train_images / 255.0, test_images / 255.0

    train_images.shape,test_images.shape,train_labels.shape,test_labels.shape

    ((60000, 28, 28), (10000, 28, 28), (60000,), (10000,))

    加载数据集会返回四个 NumPy 数组:

    train_images 和 train_labels 数组是训练集,模型用于学习的数据。
    test_images 和 test_labels 数组是测试集,会被用来对模型进行测试。
    图像是 28x28 的 NumPy 数组,像素值介于 0 到 255 之间。标签是整数数组,介于 0 到 9 之间。这些标签对应于图像所代表的服装类:

    标签 类 标签 类
    0 T恤/上衣 5 凉鞋
    1 裤子 6 衬衫
    2 套头衫 7 运动鞋
    3 连衣裙 8 包
    4 外套 9 短靴
    4.调整图片格式
    #调整数据到我们需要的格式
    train_images = train_images.reshape((60000, 28, 28, 1))
    test_images = test_images.reshape((10000, 28, 28, 1))

    train_images.shape,test_images.shape,train_labels.shape,test_labels.shape

    ((60000, 28, 28, 1), (10000, 28, 28, 1), (60000,), (10000,))

    5. 可视化
    class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
    'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

    plt.figure(figsize=(20,10))
    for i in range(20):
    plt.subplot(5,10,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    plt.xlabel(class_names[train_labels[i]])
    plt.show()

    二、构建CNN网络
    卷积神经网络(CNN)的输入是张量 (Tensor) 形式的 (image_height, image_width, color_channels),包含了图像高度、宽度及颜色信息。不需要输入batch size。color_channels 为 (R,G,B) 分别对应 RGB 的三个颜色通道(color channel)。在此示例中,我们的 CNN 输入,fashion_mnist 数据集中的图片,形状是 (28, 28, 1)即灰度图像。我们需要在声明第一层时将形状赋值给参数input_shape。

    model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)), #卷积层1,卷积核3*3
    layers.MaxPooling2D((2, 2)), #池化层1,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'), #卷积层2,卷积核3*3
    layers.MaxPooling2D((2, 2)), #池化层2,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'), #卷积层3,卷积核3*3

    layers.Flatten(), #Flatten层,连接卷积层与全连接层
    layers.Dense(64, activation='relu'), #全连接层,特征进一步提取
    layers.Dense(10) #输出层,输出预期结果
    ])

    model.summary() # 打印网络结构

    Model: "sequential"
    _________________________________________________________________
    Layer (type) Output Shape Param #
    =================================================================
    conv2d (Conv2D) (None, 26, 26, 32) 320
    _________________________________________________________________
    max_pooling2d (MaxPooling2D) (None, 13, 13, 32) 0
    _________________________________________________________________
    conv2d_1 (Conv2D) (None, 11, 11, 64) 18496
    _________________________________________________________________
    max_pooling2d_1 (MaxPooling2 (None, 5, 5, 64) 0
    _________________________________________________________________
    conv2d_2 (Conv2D) (None, 3, 3, 64) 36928
    _________________________________________________________________
    flatten (Flatten) (None, 576) 0
    _________________________________________________________________
    dense (Dense) (None, 64) 36928
    _________________________________________________________________
    dense_1 (Dense) (None, 10) 650
    =================================================================
    Total params: 93,322
    Trainable params: 93,322
    Non-trainable params: 0
    _________________________________________________________________


    三、编译
    在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

    损失函数(loss):用于测量模型在训练期间的准确率。您会希望最小化此函数,以便将模型“引导”到正确的方向上。
    优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
    指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
    model.compile(optimizer='adam',
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    metrics=['accuracy'])

    四、训练模型
    history = model.fit(train_images, train_labels, epochs=10,
    validation_data=(test_images, test_labels))

    Epoch 1/10
    1875/1875 [==============================] - 9s 4ms/step - loss: 0.7005 - accuracy: 0.7426 - val_loss: 0.3692 - val_accuracy: 0.8697
    Epoch 2/10
    1875/1875 [==============================] - 6s 3ms/step - loss: 0.3303 - accuracy: 0.8789 - val_loss: 0.3106 - val_accuracy: 0.8855
    Epoch 3/10
    1875/1875 [==============================] - 6s 3ms/step - loss: 0.2770 - accuracy: 0.8988 - val_loss: 0.3004 - val_accuracy: 0.8902
    Epoch 4/10
    1875/1875 [==============================] - 6s 3ms/step - loss: 0.2398 - accuracy: 0.9097 - val_loss: 0.2898 - val_accuracy: 0.8968
    Epoch 5/10
    1875/1875 [==============================] - 6s 3ms/step - loss: 0.2191 - accuracy: 0.9195 - val_loss: 0.2657 - val_accuracy: 0.9057
    Epoch 6/10
    1875/1875 [==============================] - 6s 3ms/step - loss: 0.1952 - accuracy: 0.9292 - val_loss: 0.2731 - val_accuracy: 0.9036
    Epoch 7/10
    1875/1875 [==============================] - 6s 3ms/step - loss: 0.1791 - accuracy: 0.9322 - val_loss: 0.2747 - val_accuracy: 0.9056
    Epoch 8/10
    1875/1875 [==============================] - 6s 3ms/step - loss: 0.1576 - accuracy: 0.9416 - val_loss: 0.2750 - val_accuracy: 0.9049
    Epoch 9/10
    1875/1875 [==============================] - 6s 3ms/step - loss: 0.1421 - accuracy: 0.9461 - val_loss: 0.2876 - val_accuracy: 0.9032
    Epoch 10/10
    1875/1875 [==============================] - 6s 3ms/step - loss: 0.1330 - accuracy: 0.9509 - val_loss: 0.2769 - val_accuracy: 0.9144

    五、预测
    预测结果是一个包含 10 个数字的数组。它们代表模型对 10 种不同服装中每种服装的“置信度”。我们可以看到哪个标签的置信度值最大

    plt.imshow(test_images[1])


    import numpy as np

    pre = model.predict(test_images)
    print(class_names[np.argmax(pre[1])])

    Pullover

    六、模型评估
    plt.plot(history.history['accuracy'], label='accuracy')
    plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
    plt.xlabel('Epoch')
    plt.ylabel('Accuracy')
    plt.ylim([0.5, 1])
    plt.legend(loc='lower right')
    plt.show()

    test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)


    313/313 - 0s - loss: 0.2769 - accuracy: 0.9144

    print("测试准确率为:",test_acc)

    测试准确率为: 0.9143999814987183

  • 相关阅读:
    备份服务器实战
    LAMP架构编译安装过程详解
    centos .7x service iptables save 错误解决方案
    Linux上安装jdk1.8和配置环境变量
    YUM源使用阿里镜像
    Linux增加swap分区的方法
    elasticsearch5.4集群超时
    职场PPT达人装酷的13条秘诀
    千古绝唱风月事,河山绘尽一人心
    前端集成解决方案
  • 原文地址:https://www.cnblogs.com/charles-s/p/14941541.html
Copyright © 2011-2022 走看看