https://blog.csdn.net/dgyuanshaofeng/article/details/78686117
Sensitivity,我们常说“敏感性”、“灵敏性”、“召回率”或者“查全率”,维基百科的说明为“Sensitivity (also calledthe true positive rate, the recall, or probability of detection in some fields) measures the proportion of positives that are correctly identified as such (e.g. the percentage of sick people who are correctly identified as having the condition).”。计算公式如(1)式:
Sensitivity/TPR = TP / (TP + FN) (1)
其中,TP为将正类预测为正类数,FN为将正类预测为负类数。TPR为True positive rate。Sensitivity的值越大,说明“有病的被判断为有病的”越大,“漏检”(FN)越小。
Specificity,我们常说“特异性”,维基百科的说明为“Specificity (also calledthe true negative rate) measures the proportion of negatives that are correctly identified as such (e.g. the percentage of healthy people who are correctly identified as not having the condition).”。仿照公式(1),其计算公式如(2)式:
Specificity/TNR = TN / (TN + FP) (2)
其中,TN为将负类预测为负类数,FP为将负类预测为正类数。TNR为True negative rate。Specificity的值越大,说明“健康的被判断为健康的”的越大,“误检”(FP)越小。
————————————————
版权声明:本文为CSDN博主「小锋子Shawn」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/dgyuanshaofeng/article/details/78686117