zoukankan      html  css  js  c++  java
  • 模拟退火算法

    这篇文章写的不错:

    http://www.cnblogs.com/heaad/archive/2010/12/20/1911614.html

    今天感觉写文章和学东西,有点发散,东一块西一块,呵呵。要逐渐收敛。

    一. 爬山算法 ( Hill Climbing )

    爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜索到全局最优解。如图1所示:假设C点为当前解,爬山算法搜索到A点这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不能得到更优的解。

    二. 模拟退火(SA,Simulated Annealing)思想

    模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。

    以上图为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。

     

    模拟退火算法描述:

             若J( Y(i+1) )>= J( Y(i) )  (即移动后得到更优解),则总是接受该移动

             若J( Y(i+1) )< J( Y(i) )  (即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)

    这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。

      根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:

        P(dE) = exp( dE/(kT) )

      其中k是一个常数,exp表示自然指数,且dE<0。这条公式说白了就是:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。又由于dE总是小于0(否则就不叫退火了),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。

      随着温度T的降低,P(dE)会逐渐降低。

      我们将一次向较差解的移动看做一次温度跳变过程,我们以概率P(dE)来接受这样的移动。

    关于爬山算法与模拟退火,有一个有趣的比喻:

      爬山算法:兔子朝着比现在高的地方跳去。它找到了不远处的最高山峰。但是这座山不一定是珠穆朗玛峰。这就是爬山算法,它不能保证局部最优值就是全局最优值。

      模拟退火:兔子喝醉了。它随机地跳了很长时间。这期间,它可能走向高处,也可能踏入平地。但是,它渐渐清醒了并朝最高方向跳去。这就是模拟退火。

    四. 使用模拟退火算法解决旅行商问题

      旅行商问题 ( TSP , Traveling Salesman Problem ) :有N个城市,要求从其中某个问题出发,唯一遍历所有城市,再回到出发的城市,求最短的路线。

      旅行商问题属于所谓的NP完全问题,精确的解决TSP只能通过穷举所有的路径组合,其时间复杂度是O(N!) 。

    使用模拟退火算法可以比较快的求出TSP的一条近似最优路径。(使用遗传算法也是可以的,我将在下一篇文章中介绍)模拟退火解决TSP的思路:

    1. 产生一条新的遍历路径P(i+1),计算路径P(i+1)的长度L( P(i+1) )

    2. 若L(P(i+1)) < L(P(i)),则接受P(i+1)为新的路径,否则以模拟退火的那个概率接受P(i+1) ,然后降温

    3. 重复步骤1,2直到满足退出条件

      产生新的遍历路径的方法有很多,下面列举其中3种:

    1. 随机选择2个节点,交换路径中的这2个节点的顺序。

    2. 随机选择2个节点,将路径中这2个节点间的节点顺序逆转。

    3. 随机选择3个节点m,n,k,然后将节点m与n间的节点移位到节点k后面。

    五. 算法评价

            模拟退火算法是一种随机算法,并不一定能找到全局的最优解,可以比较快的找到问题的近似最优解。 如果参数设置得当,模拟退火算法搜索效率比穷举法要高。

  • 相关阅读:
    .net core实现的全程序跟踪
    gmap.net
    Spring Cloud实践:降级、限流、滚动、灰度、AB、金丝雀的实现思路
    服务的协作:服务间的消息传递——《微服务设计》读书笔记
    使用消息系统进行微服务间通讯时,如何保证数据一致性
    How to distribute a database among microservices
    微服务间如何选择推送和拉取数据
    Android 怎么使用Bitmap+Canvas 自适应屏幕
    Android 音乐播放器之--错误状态下调用导致的异常
    Android应用截图和SurfaceView截图问题总结
  • 原文地址:https://www.cnblogs.com/charlesblc/p/6289088.html
Copyright © 2011-2022 走看看