zoukankan      html  css  js  c++  java
  • GAN Generative Adversarial Network 生成式对抗网络-相关内容

    参考:

    https://baijiahao.baidu.com/s?id=1568663805038898&wfr=spider&for=pc

    Generative Adversarial Network

    GAN基础和优点

    这些惊艳的工作基本都是2016年8月甚至10月以后的,也就是 GAN 被提出两年后。这是因为,虽然 GAN 有非常吸引人的性质,想要训练好它并不容易。经过两年的摸索、思考与尝试,才有了如今的积累和突破。

    那么这个非常吸引人的 GAN 是什么样呢。其实 GAN 最初让人“哇”的地方在于,作为一个生成模型,GAN 就像魔术师变魔术一样,只需要一个噪音(噪音向量),就可以生成一只兔子!

     在这样反复的练习中,作为魔术师的 GAN 扮演的是生成模型的角色,目的是要不断地提高自己的魔术水平,从而变出更活灵活现的兔子;而观众扮演的是一种判别模型的角色,目的是考察和激励魔术师提高自己的水平。但是这种激励是通过批评或者惩罚的方式完成的。

    严格来说,一个 GAN 框架,最少(但不限于)拥有两个组成部分,一个是生成模型 G,一个是判别模型 D。在训练过程中,会把生成模型生成的样本和真实样本随机地传送一张(或者一个 batch)给判别模型 D。判别模型 D 的目标是尽可能正确地识别出真实样本(输出为“真”,或者1),和尽可能正确地揪出生成的样本,也就是假样本(输出为“假”,或者0)。

    这两个目标分别对应了下方的目标函数的第一和第二项。

    而生成模型的目标则和判别模型相反,就是尽可能最小化判别模型揪出它的概率。这样 G 和 D 就组成了一个 min-max game,在训练过程中双方都不断优化自己,直到达到平衡——双方都无法变得更好,也就是假样本与真样本完全不可区分。

    这样 G 和 D 就组成了一个 min-max game,在训练过程中双方都不断优化自己,直到达到平衡——双方都无法变得更好,也就是假样本与真样本完全不可区分。

    通过这样的巧妙设计,GAN 就拥有了一个非常吸引人的性质。GAN 中的 G 作为生成模型,不需要像传统图模型一样,需要一个严格的生成数据的表达式。这就避免了当数据非常复杂的时候,复杂度过度增长导致的不可计算。同时,它也不需要 inference 模型中的一些庞大计算量的求和计算。它唯一的需要的就是,一个噪音输入,一堆无标准的真实数据两个可以逼近函数的网络

    剩下的就看不懂了。。。

    能知识再多积累一些,再看剩下的吧:

    https://mp.weixin.qq.com/s?__biz=MzAwMjM3MTc5OA==&mid=2652692740&idx=1&sn=f1b134f63eb0bf5e4d6759db4d740e58

  • 相关阅读:
    网络测量中基于Sketch方法的简单介绍
    Reading SBAR SDN flow-Based monitoring and Application Recognition
    Reading Meticulous Measurement of Control Packets in SDN
    Reading SketchVisor Robust Network Measurement for Sofeware Packet Processing
    ovs加dpdk在日志中查看更多运行细节的方法
    后缀数组
    (转载)LCA问题的Tarjan算法
    Codeforces Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) A. Checking the Calendar(水题)
    Vijos 1816统计数字(计数排序)
    卡特兰数
  • 原文地址:https://www.cnblogs.com/charlesblc/p/8484420.html
Copyright © 2011-2022 走看看