zoukankan      html  css  js  c++  java
  • Opentelemetry Collector的配置和使用

    Collector的配置和使用

    Collector配置

    collector通过pipeline处理service中启用的数据。pipeline由接收遥测数据的组件构成,包括:

    其次还可以通过扩展来为Collector添加功能,但扩展不需要直接访问遥测数据,且不是pipeline的一部分。扩展同样可以在service中启用。

    Receivers

    receiver定义了数据如何进入OpenTelemetry Collector。必须配置一个或多个receiver,默认不会配置任何receivers。

    下面给出了所有可用的receivers的基本例子,更多配置可以参见receiver文档

    receivers:
      opencensus:
        address: "localhost:55678"
    
      zipkin:
        address: "localhost:9411"
    
      jaeger:
        protocols:
          grpc:
          thrift_http:
          thrift_tchannel:
          thrift_compact:
          thrift_binary:
    
      prometheus:
        config:
          scrape_configs:
            - job_name: "caching_cluster"
              scrape_interval: 5s
              static_configs:
                - targets: ["localhost:8889"]
    

    Processors

    Processors运行在数据的接收和导出之间。虽然Processors是可选的,但有时候会建议使用Processors。

    下面给出了所有可用的Processors的基本例子,更多参见Processors文档

    processors:
      attributes/example:
        actions:
          - key: db.statement
            action: delete
      batch:
        timeout: 5s
        send_batch_size: 1024
      probabilistic_sampler:
        disabled: true
      span:
        name:
          from_attributes: ["db.svc", "operation"]
          separator: "::"
      queued_retry: {}
      tail_sampling:
        policies:
          - name: policy1
            type: rate_limiting
            rate_limiting:
              spans_per_second: 100
    

    Exporters

    exporter指定了如何将数据发往一个或多个后端/目标。必须配置一个或多个exporter,默认不会配置任何exporter。

    下面给出了所有可用的exporters的基本例子,更多参见exporters文档

    exporters:
      opencensus:
        headers: {"X-test-header": "test-header"}
        compression: "gzip"
        cert_pem_file: "server-ca-public.pem" # optional to enable TLS
        endpoint: "localhost:55678"
        reconnection_delay: 2s
    
      logging:
        loglevel: debug
    
      jaeger_grpc:
        endpoint: "http://localhost:14250"
    
      jaeger_thrift_http:
        headers: {"X-test-header": "test-header"}
        timeout: 5
        endpoint: "http://localhost:14268/api/traces"
    
      zipkin:
        endpoint: "http://localhost:9411/api/v2/spans"
    
      prometheus:
        endpoint: "localhost:8889"
        namespace: "default"
    

    Service

    Service部分用于配置OpenTelemetry Collector根据receivers, processors, exporters, 和extensions sections的配置会启用那些特性。service分为两部分:

    • extensions
    • pipelines

    extensions包含启用的扩展,如:

        service:
          extensions: [health_check, pprof, zpages]
    

    Pipelines有两类:

    • metrics: 采集和处理metrics数据
    • traces: 采集和处理trace数据

    一个pipeline是一组 receivers, processors, 和exporters的集合。必须在service之外定义每个receiver/processor/exporter的配置,然后将其包含到pipeline中。

    注:每个receiver/processor/exporter都可以用到多个pipeline中。当多个pipeline引用processor(s)时,每个pipeline都会获得该processor(s)的一个实例,这与多个pipeline中引用receiver(s)/exporter(s)的情况不同(所有pipelines仅能获得receiver/exporter的一个实例)。

    下面给出了一个pipeline配置的例子,更多可以参见pipeline文档

    service:
      pipelines:
        metrics:
          receivers: [opencensus, prometheus]
          exporters: [opencensus, prometheus]
        traces:
          receivers: [opencensus, jaeger]
          processors: [batch, queued_retry]
          exporters: [opencensus, zipkin]
    

    Extensions

    Extensions可以用于监控OpenTelemetry Collector的健康状态。Extensions是可选的,默认不会配置任何Extensions。

    下面给出了所有可用的extensions的基本例子,更多参见extensions文档

    extensions:
      health_check: {}
      pprof: {}
      zpages: {}
    

    使用环境变量

    collector配置中可以使用环境变量,如:

    processors:
      attributes/example:
        actions:
          - key: "$DB_KEY"
            action: "$OPERATION"
    

    Collector的使用

    下面使用官方demo来体验一下Collector的功能

    本例展示如何从OpenTelemetry-Go SDK 中导出trace和metric数据,并将其导入OpenTelemetry Collector,最后通过Collector将trace数据传递给Jaeger,将metric数据传递给Prometheus。完整的流程为:

                                              -----> Jaeger (trace)
    App + SDK ---> OpenTelemtry Collector ---|
                                              -----> Prometheus (metrics)
    

    部署到Kubernetes

    k8s目录中包含本demo所需要的所有部署文件。为了简化方便,官方将部署目录集成到了一个makefile文件中。在必要时可以手动执行Makefile中的命令。

    部署Prometheus operator

    git clone https://github.com/coreos/kube-prometheus.git
    cd kube-prometheus
    kubectl create -f manifests/setup
    
    # wait for namespaces and CRDs to become available, then
    kubectl create -f manifests/
    

    可以使用如下方式清理环境:

    kubectl delete --ignore-not-found=true -f manifests/ -f manifests/setup
    

    等待prometheus所有组件变为running状态

    # kubectl get pod -n monitoring
    NAME                                   READY   STATUS    RESTARTS   AGE
    alertmanager-main-0                    2/2     Running   0          16m
    alertmanager-main-1                    2/2     Running   0          16m
    alertmanager-main-2                    2/2     Running   0          16m
    grafana-7f567cccfc-4pmhq               1/1     Running   0          16m
    kube-state-metrics-85cb9cfd7c-x6kq6    3/3     Running   0          16m
    node-exporter-c4svg                    2/2     Running   0          16m
    node-exporter-n6tnv                    2/2     Running   0          16m
    prometheus-adapter-557648f58c-vmzr8    1/1     Running   0          16m
    prometheus-k8s-0                       3/3     Running   0          16m
    prometheus-k8s-1                       3/3     Running   1          16m
    prometheus-operator-5b469f4f66-qx2jc   2/2     Running   0          16m
    

    使用Makefile

    下面使用makefile部署Jaeger,Prometheus monitor和Collector,依次执行如下命令即可:

    # Create the namespace
    make namespace-k8s
    
    # Deploy Jaeger operator
    make jaeger-operator-k8s
    
    # After the operator is deployed, create the Jaeger instance
    make jaeger-k8s
    
    # Then the Prometheus instance. Ensure you have enabled a Prometheus operator
    # before executing (see above).
    make prometheus-k8s
    
    # Finally, deploy the OpenTelemetry Collector
    make otel-collector-k8s
    

    等待observability命名空间下的Jaeger和Collector的Pod变为running状态

    # kubectl get pod -n observability
    NAME                              READY   STATUS    RESTARTS   AGE
    jaeger-7b868df4d6-w4tk8           1/1     Running   0          97s
    jaeger-operator-9b4b7bb48-q6k59   1/1     Running   0          110s
    otel-collector-7cfdcb7658-ttc8j   1/1     Running   0          14s
    

    可以使用make clean-k8s命令来清理环境,但该命令不会移除命名空间,需要手动删除命名空间:

    kubectl delete namespaces observability
    

    配置OpenTelemetry Collector

    完成上述步骤之后,就部署好了所需要的所有资源。下面看一下Collector的配置文件

    为了使应用发送数据到OpenTelemetry Collector,首先需要配置otlp类型的receiver,它使用gRpc进行通信:

    ...
      otel-collector-config: |
        receivers:
          # Make sure to add the otlp receiver.
          # This will open up the receiver on port 55680.
          otlp:
            endpoint: 0.0.0.0:55680
        processors:
    ...
    

    上述配置会在Collector侧创建receiver,并打开55680端口,用于接收trace。剩下的配置都比较标准,唯一需要注意的是需要创建Jaeger和Prometheus exporters:

    ...
        exporters:
          jaeger_grpc:
            endpoint: "jaeger-collector.observability.svc.cluster.local:14250"
    
          prometheus:
               endpoint: 0.0.0.0:8889
               namespace: "testapp"
    ...
    
    OpenTelemetry Collector service

    配置中另外一个值得注意的是用于访问OpenTelemetry Collector的NodePort

    apiVersion: v1
    kind: Service
    metadata:
            ...
    spec:
      ports:
      - name: otlp # Default endpoint for otlp receiver.
        port: 55680
        protocol: TCP
        targetPort: 55680
        nodePort: 30080
      - name: metrics # Endpoint for metrics from our app.
        port: 8889
        protocol: TCP
        targetPort: 8889
      selector:
        component: otel-collector
      type:
        NodePort
    

    该service 会将用于访问otlp receiver的30080端口与cluster node的55680端口进行绑定,这样就可以通过静态地址<node-ip>:30080来访问Collector。

    运行代码

    main.go文件中可以看到完整的示例代码。要运行该代码,需要满足Go的版本>=1.13

    # go run main.go
    2020/10/20 09:19:17 Waiting for connection...
    2020/10/20 09:19:17 Doing really hard work (1 / 10)
    2020/10/20 09:19:18 Doing really hard work (2 / 10)
    2020/10/20 09:19:19 Doing really hard work (3 / 10)
    2020/10/20 09:19:20 Doing really hard work (4 / 10)
    2020/10/20 09:19:21 Doing really hard work (5 / 10)
    2020/10/20 09:19:22 Doing really hard work (6 / 10)
    2020/10/20 09:19:23 Doing really hard work (7 / 10)
    2020/10/20 09:19:24 Doing really hard work (8 / 10)
    2020/10/20 09:19:25 Doing really hard work (9 / 10)
    2020/10/20 09:19:26 Doing really hard work (10 / 10)
    2020/10/20 09:19:27 Done!
    2020/10/20 09:19:27 exporter stopped
    

    该示例模拟了一个正在运行应用程序,计算10秒之后结束。

    查看采集到的数据

    运行go run main.go的数据流如下:

    Jaeger UI

    Jaeger上查询trace内容如下:

    Prometheus

    运行main.go结束之后,可以在Prometheus中查看该metric。其对应的Prometheus target为observability/otel-collector/0

    Prometheus上查询metric内容如下:

    FAQ:

    • 在运行完部署命令之后,发现Prometheus没有注册如http://10.244.1.33:8889/metrics这样的target。可以查看Prometheus pod的日志,可能是因为Prometheus没有对应的role权限导致的,将Prometheus的clusterrole修改为如下内容即可:

      kind: ClusterRole
      apiVersion: rbac.authorization.k8s.io/v1
      metadata:
        name: prometheus-k8s
        namespace: monitoring
      rules:
      - apiGroups: [""]
        resources: ["services","pods","endpoints","nodes/metrics"]
        verbs: ["get", "watch", "list"]
      - apiGroups: ["extensions"]
        resources: ["ingresses"]
        verbs: ["get", "watch", "list"]
      - nonResourceURLs: ["/metrics"]
        verbs: ["get", "watch", "list"]
      
    • 在运行"go run main.go"时可能会遇到rpc error: code = Internal desc = grpc: error unmarshalling request: unexpected EOF这样的错误,通常因为client和server使用的proto不一致导致的。client端(即main.go)使用的proto文件目录为go.opentelemetry.io/otel/exporters/otlp/internal/opentelemetry-proto-gen,而collector使用proto文件目录为go.opentelemetry.io/collector/internal/data/opentelemetry-proto-gen,需要比较这两个目录下的文件是否一致。如果不一致,则需要根据collector的版本为main.go生成对应的proto文件(或者可以直接更换collector的镜像,注意使用的otel/opentelemetry-collector的镜像版本)。在collector的proto目录下可以看到对应的注释和使用的proto版本,如下:

      collector使用的proto git库为opentelemetry-proto。clone该库,切换到对应版本后,执行make gen-go即可生成对应的文件。

      Component Maturity
      Binary Protobuf Encoding
      collector/metrics/* Alpha
      collector/trace/* Stable
      common/* Stable
      metrics/* Alpha
      resource/* Stable
      trace/trace.proto Stable
      trace/trace_config.proto Alpha
      JSON encoding
      All messages Alpha
  • 相关阅读:
    ufw防火墙设置
    [从0到1搭建ABP微服务]
    .Net Core CI/CD环境搭建(正式版)
    [Abp vNext微服务实践]
    [Abp vNext微服务实践]
    [Abp vNext微服务实践]
    [Abp vNext微服务实践]
    [Abp vNext微服务实践]
    [Abp vNext微服务实践]
    [Abp vNext微服务实践]
  • 原文地址:https://www.cnblogs.com/charlieroro/p/13883602.html
Copyright © 2011-2022 走看看