zoukankan      html  css  js  c++  java
  • Hadoop数据收集与入库系统Flume与Sqoop

    Hadoop提供了一个中央化的存储系统,其有利于进行集中式的数据分析与数据共享。 Hadoop对存储格式没有要求。可以存储用户访问日志、产品信息以及网页数据等数据。

           常见的两种数据来源。一种是分散的数据源:机器产生的数据、用户访问日志以及用户购买日志。另一种是传统系统中的数据:传统关系型数据库(MySQL、Oracle)、磁盘阵列以及磁带。


            Flume由三部分构成。Master负责负责通信及配置管理,是集群的控制器。Collector用于对数据进行聚合。往往会产生一个更大的数据流。然后加载到HDFS上。Agent负责采集数据。其是Flume中产生数据流的地方,同时Agent会将产生的数据传输到Collector.

            Agent 用于采集数据是数据流产生的地方。通常由source和sink两部分组成 。Source用于获取数据,可从文本文件,syslog,HTTP等获 取数据。 Sink将Source获得的数据进一步传输给后面的Collector。 Flume自带了很多source和sink实现。 syslogTcp(5140) | agentSink("localhost",35853) 意思是通过通信协议获取5140端口数据,然后发送到localhost主机的35853端口。 tail("/etc/services") | agentSink("localhost",35853) 意思是读取文件夹/etc/services下文件,然后发送到localhost主机的35853端口。

           Collector 用于汇总多个Agent结果 ,将汇总结果导入后端存储系统,比如HDFS,HBase。 Flume自带了很多collector实现 collectorSource(35853) | console  表示将收集结果写到控制台。CollectorSource(35853) | collectorSink("file:///tmp/flume/collected", "syslog") 表示将收集结果写到本地目录。collectorSource(35853) | collectorSink("hdfs://namenode/user/flume/ ","syslog"); 表示将收集结果写到hdfs目录。


           一般为了防止一个collector挂掉所有agent都失效可以将不同的agent连接不同的collector。同时,这样可以保证不同数据类型的agent将数据放到同一个collector。

           Master 负责管理协调 agent 和collector的配置信息,是Flume集群的控制器。其可跟踪数据流的最后确认信息,并通知agent。 通常需配置多个master以防止单点故障。借助zookeeper管理管理多Master。 

    构建基于Flume的数据收集系统 

           Agent和Collector均可以动态配置。可通过命令行或Web界面配置。 命令行配置 : 在已经启动的master节点上,依次输入”flume shell””connect localhost ”    如执行 exec config a1 ‘tailDir(“/data/logfile”)’ ‘agentSink’ 。 Web界面 : 选中节点,填写source、sink等信息。

    常用架构举例—拓扑1  


    agentA : tail(“/ngnix/logs”) | agentSink("collector",35853); 

    agentB : tail(“/ngnix/logs”) | agentSink("collector",35853);

    agentC : tail(“/ngnix/logs”) | agentSink("collector",35853); 

    agentD : tail(“/ngnix/logs”) | agentSink("collector",35853); 

    agentE : tail(“/ngnix/logs”) | agentSink("collector",35853); 

    agentF : tail(“/ngnix/logs”) | agentSink("collector",35853); collector : collectorSource(35853) | collectorSink("hdfs://namenode/flume/","srcdata"); 


    agentA : src | agentE2ESink("collectorA",35853); 

    agentB : src | agentE2ESink("collectorA",35853); 

    agentC : src | agentE2ESink("collectorB",35853);

    agentD : src | agentE2ESink("collectorB",35853); 

    agentE : src | agentE2ESink("collectorC",35853); 

    agentF : src | agentE2ESink("collectorC",35853); 

    collectorA : collectorSource(35853) | collectorSink("hdfs://...","src"); 

    collectorB : collectorSource(35853) | collectorSink("hdfs://...","src"); 

    collectorC : collectorSource(35853) | collectorSink("hdfs://...","src"); 


    agentA : src | agentE2EChain("collectorA:35853","collectorB:35853"); 

    agentB : src | agentE2EChain("collectorA:35853","collectorC:35853");

    agentC : src | agentE2EChain("collectorB:35853","collectorA:35853"); 

    agentD : src | agentE2EChain("collectorB:35853","collectorC:35853"); 

    agentE : src | agentE2EChain("collectorC:35853","collectorA:35853"); 

    agentF : src | agentE2EChain("collectorC:35853","collectorB:35853"); 

    collectorA : collectorSource(35853) | collectorSink("hdfs://...","src");

    collectorB : collectorSource(35853) | collectorSink("hdfs://...","src"); 

    collectorC : collectorSource(35853) | collectorSink("hdfs://...","src"); 

    传统数据库与Hadoop间数据同步 

          Sqoop:SQL-to-Hadoop,是连接传统关系型数据库和Hadoop 的桥梁。可以把关系型数据库的数据导入到 Hadoop 系统 ( 如 HDFS HBase 和 Hive) 中或把数据从 Hadoop 系统里抽取并导出到关系型数据库里/利用MapReduce可以加快数据传输速度实现批处理方式进行数据传输。

           Sqoop优势是高效、可控地利用资源、任务并行度,超时时间等 、数据类型映射与转换 可自动进行或用户也可自定义 。同时,其 支持多种数据库如:MySQL 、Oracle 以及PostgreSQL 。

         

           通过命令sqoop可以生成map task将传统数据库中的数据传输到HDFS、Hbase或Hive上。

    Sqoop import 将数据从关系型数据库导入Hadoop中 



            步骤1:Sqoop与数据库Server通信,获取数据库表的元数据 信息; 步骤2:Sqoop启动一个MapOnly的MR作业,利用元数据信 息并行将数据写入Hadoop。

    Sqoop import使用:

    sqoop import     

    --connect jdbc:mysql://mysql.example.com/sqoop    

    --username sqoop     

    --password sqoop     

    --table cities 

    --connnect: 指定JDBC URL 

    --username/password:mysql数据库的用户名 

    --table:要读取的数据库表 
    bin/hadoop fs -cat cities/part-m-* 

    1,USA,Palo Alto 

    2,Czech Republic,Brno 

    3,USA,Sunnyvale 

    导入到指定目录:

    sqoop import     

    --connect jdbc:mysql://mysql.example.com/sqoop     

    --username sqoop    

    --password sqoop     

    --table cities     

    --target-dir /etl/input/cities 

    导入字段country为USA的值:

    sqoop import    

    --connect jdbc:mysql://mysql.example.com/sqoop     

    --username sqoop     

    --password sqoop     

    --table cities     

    --where "country = 'USA'" 

    生成顺序文件:

    sqoop import     

    --connect jdbc:mysql://mysql.example.com/sqoop     

    --username sqoop     

    --password sqoop     

    --table cities     

    --as-sequencefile 

    指定map个数:

    sqoop import     

    --connect jdbc:mysql://mysql.example.com/sqoop     

    --username sqoop     

    --password sqoop     

    --table cities     

    --num-mappers 10

    Sqoop import—导入多个表 :

    sqoop import   

    --connect jdbc:mysql://mysql.example.com/sqoop  

    --username sqoop   

    --password sqoop   

    --query 'SELECT normcities.id,                  

    countries.country,                  

    normcities.city                  

    FROM normcities                  

    JOIN countries USING(country_id)                  

    WHERE $CONDITIONS'  

    --split-by id  

    --target-dir cities 

    Sqoop import增量导入(一):

            适用于数据每次被追加到数据库中,而已有数据不变的情况且仅导入id这一列值大于1的记录。 

    sqoop import     

    --connect jdbc:mysql://mysql.example.com/sqoop     

    --username sqoop    

    --password sqoop     

    --table visits     

    --incremental append     

    --check-column id     

    --last-value 1 

    Sqoop import增量导入(二)

             每次成功运行后,sqoop将最后一条记录的id值保存到 metastore中,供下次使用。 

    sqoop job   

    --create visits   

    --import   

    --connect jdbc:mysql://mysql.example.com/sqoop   

    --username sqoop   

    --password sqoop   

    --table visits   

    --incremental append   

    --check-column id   

    --last-value 0 

    运行sqoop作业:sqoop job --exec visits 

    Sqoop import增量导入(三) 

            数据库中有一列last_update_date,记录了上次修改时间。 Sqoop仅将某时刻后的数据导入Hadoop。 
    sqoop import   

    --connect jdbc:mysql://mysql.example.com/sqoop   

    --username sqoop   

    --password sqoop   

    --table visits   

    --incremental lastmodified   

    --check-column last_update_date   

    --last-value “2013-05-22 01:01:01” 

    Sqoop Export 将数据从Hadoop导入关系型数据库导中 


           步骤1:Sqoop与数据库Server通信,获取数据库表的元数据 信息; 步骤2:并行导入数据:将Hadoop上文件划分成若 干个split; 每个split由一个Map Task进 行数据导入。 

    Sqoop Export使用方法 
    sqoop export     

    --connect jdbc:mysql://mysql.example.com/sqoop     

    --username sqoop     

    --password sqoop     

    --table cities     

    --export-dir cities 
    --connnect: 指定JDBC URL 

    --username/password:mysql数据库的用户名 

    --table:要导入的数据库表 

    export-dir:数据在HDFS上存放目录 

    Sqoop Export—保证原子性:
    sqoop export    

    --connect jdbc:mysql://mysql.example.com/sqoop     

    --username sqoop     

    --password sqoop     

    --table cities     

    --staging-table staging_cities 


    Sqoop Export—更新已有数据:

    sqoop export     

    --connect jdbc:mysql://mysql.example.com/sqoop     

    --username sqoop     

    --password sqoop     

    --table cities     

    --update-key id sqoop export     

    --connect jdbc:mysql://mysql.example.com/sqoop     

    --username sqoop     

    --password sqoop     

    --table cities     

    --update-key id     

    --update-mode allowinsert 


    Sqoop Export—选择性插入 :
    sqoop export     

    --connect jdbc:mysql://mysql.example.com/sqoop     

    --username sqoop    

    --password sqoop     

    --table cities     

    --columns country,city 


    Sqoop与其他系统结合 

         Sqoop可以与Oozie、Hive、Hbase等系统结合;  用户需要在sqoop-env.sh中增加HBASE_HOME、 HIVE_HOME等环境变量。 
    Sqoop与Hive结合: 
    sqoop import     
    --connect jdbc:mysql://mysql.example.com/sqoop     
    --username sqoop     
    --password sqoop     
    --table cities     
    --hive-import  

    Sqoop与HBase结合: 
    sqoop import     
    --connect jdbc:mysql://mysql.example.com/sqoop     
    --username sqoop     
    --password sqoop     
    --table cities     
    --hbase-table cities     
    --column-family world 

          以上介绍了数据收集系统以及数据传输工具sqoop,后续将讲解Hive及Pig相关主题。

  • 相关阅读:
    怎样编写一个Photoshop滤镜(1)
    蜂窝状网格的定位方法
    【转载】[TC]飞船动画例子《C高级实用程序设计》
    【完全随笔】用户体验和设计
    在 WinCe 平台读写 ini 文件
    关于携带完整 alpha 通道图标的技术研究
    【转载】When should static_cast, dynamic_cast and reinterpret_cast be used?
    怎样编写一个Photoshop滤镜(3) Scripting Plugins
    配电网WebGIS研究与开发[5]
    配电网WebGIS研究与开发[4]
  • 原文地址:https://www.cnblogs.com/charlist/p/7122319.html
Copyright © 2011-2022 走看看