zoukankan      html  css  js  c++  java
  • Introduction to Machine Learning

    Introduction

    A ML model may be predictive to make predictions in the future, or descriptive to gain knowlegde from data, or both. So there are predictive machine leaning and descriptive machine learning

    Examples of ML Applications

    Leaning Associations

    Finding an association rule is learning a conditional probability $P(Y|X)$ where Y is the product we'd like to condition on X that one has already bought. When making a distinction among customers, we are more willing to estimate $P(Y|X,D)$ where $D$ is the set of customer attributes.

    Classification and Regression

    Both classification and regression are supervised learning problems there is an input $X$, an output $Y$, and the task is to learn the mapping from the input to the output $$y=g(x| heta)$$ where $g(dot)$ is the model and $ heta$ are its parameters. $Y$ is a number in regression and a class code (e.g. 0/1) in the case of classification. $g()$ is the discriminant function(判别函数, 是直接用来对模式样本进行分类的准则函数) separating the instances of different classes. In statistics, classification is called discriminant analysis.

    Unsupervised Learning

    In unpuservised learning, the aim is to find the regularities in the input. In statistics, it is also called density estimation. One method for density estimation is clustering like customer segmentation, image compression, document clustering and learning motif(small sequences that frequently happens) by clustering sequences of DNA. 

    Reinforcement Learning

    Notes

    Dedicated journals in ML are Machine LearningJournal of Machine Learning ResearchNeural Computation, Neural NetworksIEEE Transactions on Neural Networks. Statistics journals like Annals of StatisticsJournal of the American Statistical AssociationIEEE Transactions on Pattern Analysis, Machine Intelligence, Data Mining and Knowledge Discovery, IEEE Transactions on Knowledge and Data Engineering, ACM Special Interest Group on Knowledge Discovery and Data Mining Explorations Journal. 


    Dedicated conference in ML Neural Information Processing Systems, Uncertainty in Artificial Intelligence, International Conference on Machine Learning, European Conference on Machine Learning, Computational Learning Theory, International Joint Conference on Artificial Intelligence.

    Supervised Learning

    Binary Classification

    Suppose the Input is 2D, i.e, $ extbf{x}=egin{bmatrix} x_{1} \ x_{2}end{bmatrix}$ with label $r=egin{cases}1 & if~ extbf{x}~is~a~positive~example\0 & if~ extbf{x}~is~a~negative~exampleend{cases}$. The training set contains N such examples $X={x^t,r^t}^{N}_{t=1}$ where $t$ indexes different examples in the set where each example $t$ is a data point at $(x^t_1,x^t_2)$ with its type $r^t$.

  • 相关阅读:
    新经资讯项目业务逻辑梳理
    HTTP状态保持的原理
    CSRF的原理和防范措施
    装饰器路由具体实现梳理
    Flask中异常捕获
    正则匹配路由
    (搬运以学习)flask 上下文的实现
    flask之请求钩子
    如何在linux中创建虚拟环境
    面包屑导航
  • 原文地址:https://www.cnblogs.com/chaseblack/p/6614031.html
Copyright © 2011-2022 走看看