[BZOJ4569][Scoi2016]萌萌哒
好题!
倍增维护并查集合并
一个倍增数组\(fa[i][j]\)维护从\(i\)开始长度为\(2^j\)的这一段与那一段长度相同的并在一起
将两端区间\(l1,r2,l2,r2\)用倍增剖开,在那一层的倍增数组上用并查集合并
最后每次将\(fa[i][j]\)向\(fa[i][j-1],fa[i+(1<<(j-1))][j-1]\)递推即可
int n,m;
struct UFS{
int fa[N];
int Find(int x) { return fa[x]==x?x:fa[x]=Find(fa[x]); }
void init(){ rep(i,1,n) fa[i]=i; }
void merge(int x,int y) {
fa[Find(x)]=Find(y);
}
} B[18];
int LOG;
int main(){
n=rd(),m=rd();
for(LOG=0;(1<<LOG)<=n;LOG++) B[LOG].init();
LOG--;
rep(i,1,m) {
int l1=rd(),r1=rd();
int l2=rd();rd();
if(l1==l2) continue;
int len=r1-l1+1;
drep(j,LOG,0) {
if(len>=(1<<j)) {
B[j].merge(l1,l2);
l1+=1<<j,l2+=1<<j;
len-=1<<j;
}
}
}
drep(i,LOG,1) {
int len=(1<<(i-1));
rep(j,1,n) {
int f=B[i].Find(j);
B[i-1].merge(j,f);
B[i-1].merge(j+len,f+len);
}
}
int cnt=0;
rep(i,1,n) if(B[0].Find(i)==i) cnt++;
ll ans=1;
rep(i,1,cnt-1) ans=ans*10%P;
ans=ans*9%P;
printf("%lld\n",ans);
}