HDU-6088(容斥+MTT)
考虑计算两个人赢得次数(设为\(a,b\))都是\(d\)的倍数的方案数
注意一下\(a+b>0\)
对于\(a,b\),它的方案数为\(C(n,a)C(n-a,b)\),即\(\frac{n!}{a!b!(n-a-b)!}\)
多以对于每个\(d\)计算一遍所有可行的\(a,b\)能组成的总方案数
这个可以\(MTT\)(因为模数不确定)
\(MTT\)的实现,可以参考,在文章下面的扩展介绍里
由于是\(d\)的倍数会包含所有\(d|gcd(a,b)\)的情况,所以还需要容斥一下
复杂度\(n\ln n \log n\),以及极其大的常数
#include<bits/stdc++.h>
using namespace std;
#define double long double
#define reg register
typedef long long ll;
#define rep(i,a,b) for(reg int i=a,i##end=b;i<=i##end;++i)
#define drep(i,a,b) for(reg int i=a,i##end=b;i>=i##end;--i)
template <class T> inline void cmin(T &a,T b){ ((a>b)&&(a=b)); }
template <class T> inline void cmax(T &a,T b){ ((a<b)&&(a=b)); }
char IO;
int rd(){
int s=0,f=0;
while(!isdigit(IO=getchar())) if(IO=='-') f=1;
do s=(s<<1)+(s<<3)+(IO^'0');
while(isdigit(IO=getchar()));
return f?-s:s;
}
const double PI=acos((double)-1);
const int N=(1<<18)+4;
ll S;
bool be;
int n,P;
ll qpow(ll x,ll k,ll P) {
x%=P;
ll res=1;
for(;k;k>>=1,x=x*x%P) if(k&1) res=res*x%P;
return res;
}
ll qmul(ll x,ll y,ll P){
y=(y%P+P)%P;
ll res=0;
for(;y;y>>=1,x+=x,(x>=P&&(x-=P))) if(y&1) res+=x,(res>=P&&(res-=P));
return res;
}
int rev[N];
struct Cp{
double x,y;
Cp operator + (const Cp t) const { return (Cp){x+t.x,y+t.y}; }
Cp operator - (const Cp t) const { return (Cp){x-t.x,y-t.y}; }
Cp operator * (const Cp t) const { return (Cp){x*t.x-y*t.y,x*t.y+y*t.x}; }
}A[N],B[N],w[N];
void FFT(int n,Cp *a,int f){
rep(i,0,n-1) if(rev[i]<i) swap(a[i],a[rev[i]]);
for(reg int i=1;i<n;i<<=1) {
int len=n/i/2;
for(reg int l=0;l<n;l+=2*i) {
for(reg int j=l;j<l+i;j++) {
Cp t=a[j+i]*w[len*(j-l)];
a[j+i]=a[j]-t;
a[j]=a[j]+t;
}
}
}
if(f==-1) rep(i,0,n-1) a[i].x/=n,a[i].y/=n;
}
ll C[N],Inv[N],Fac[N];
ll Down(double x){
return x<0?(ll)(x-0.5):(ll)(x+0.5);
}//四舍五入取整
bool ed;
int main(){
rep(kase,1,rd()) {
n=rd(),P=rd(),S=sqrt(P)+1;
Inv[0]=Inv[1]=Fac[0]=Fac[1]=1;
rep(i,2,n) {
Inv[i]=(P-P/i)*Inv[P%i]%P;
Fac[i]=Fac[i-1]*i%P;
}
rep(i,1,n) Inv[i]=Inv[i-1]*Inv[i]%P;
int lst=-1;
rep(d,1,n) {
int lim,R=1,c=-1;
//MTT
for(lim=0;lim*d<=n;lim++) {
ll t=Inv[lim*d];
A[lim]=(Cp){1.0*(t/S),1.0*(t%S)};
B[lim]=(Cp){1.0*(t%S),0.0};
}
lim--;
while(R<=lim*2) R<<=1,c++;
rep(j,lim+1,R) A[j].x=A[j].y=B[j].x=B[j].y=0;
if(lst!=R) {
rep(i,1,R) rev[i]=(rev[i>>1]>>1)|((i&1)<<c);
w[0]=(Cp){1,0},w[1]=(Cp){cos(2*PI/R),sin(2*PI/R)};
rep(i,1,R-1) if(i%5000==3) w[i]=(Cp){cos(2*PI/R*i),sin(2*PI/R*i)};
else w[i]=w[i-1]*w[1];
lst=R;
} else rep(i,0,R-1) w[i].y=-w[i].y;
FFT(R,A,1),FFT(R,B,1);
rep(i,0,R-1) A[i]=A[i]*A[i],B[i]=B[i]*B[i];
rep(i,0,R-1) w[i].y=-w[i].y;
FFT(R,A,-1),FFT(R,B,-1);
C[d]=0;
rep(i,1,lim) {
ll a=Down(A[i].x),b=Down(B[i].x),ab=Down(A[i].y),t=0;
a+=b;
t=a%P*S%P*S%P+ab%P*S%P+b%P;
t=t*Fac[n]%P*Inv[n-d*i]%P;
C[d]=(C[d]+t)%P;
}
}
drep(i,n,1) for(reg int j=i+i;j<=n;j+=i) C[i]=(C[i]-C[j])%P;//容斥
ll ans=0;
rep(i,1,n) ans=(ans+C[i]*i)%P;
rep(i,1,n) ans=ans*3%P;
ans=(ans%P+P)%P;
printf("%lld\n",ans);
}
}