有标号荒漠计数
考虑随意选择一个点为根,则仙人掌的( ext{EGF})考虑用以下方式递归生成
令树边为二元环,则一个点周围的点都是都是与它直接相连的环
断开这个点,对于周围断开的环,环上每个点下面认为是一个仙人掌,设某个环断开之后的大小为(c)
当(c=1)时,不需要考虑排列重复,即为(F(x))
当(c>1)时,考虑环正反排列,即为(cfrac{F^c(x)}{2})
那么就容易得到(displaystyle F(x)=x cdot ext{exp}(F(x)+sum _{ige 2}frac{F^i(x)}{2}))
变一下就是(displaystyle F=xcdot ext{exp}(frac{F^2}{2-2F}+F)=xcdot ext{exp}(frac{2F-F^2}{2-2F}))
是的,我们要解这个方方方方方方程。。。牛顿迭代代代代代代代
(displaystyle f(F(x))=xcdot ext{exp}(frac{2F-F^2}{2-2F})-F=0)
(displaystyle f(z)=xcdot ext{exp}(frac{2z-z^2}{2-2z})-z)
(displaystyle f'(z)=xcdot ext{exp}(frac{2z-z^2}{2-2z})(1+frac{2z-z^2}{2z^2-4z+2})-1)
(displaystyle =xcdot ext{exp}(frac{2z-z^2}{2-2z})(frac{1}{2}+frac{1}{2z^2-4z+2})-1)
设上一层的迭代结果为(G(x)),带入牛顿迭代结论(displaystyle F(x)=G(x)-frac{f(G)}{f'(G)})
设(displaystyle H=xcdot ext{exp}(frac{2G-G^2}{2-2G})),那么得到Luogu题解里( ext{N}color{red}{ ext{aCl_Fish}})一样的式子(还要没有推错)
(displaystyle F=G-frac{2H-2G}{H(1+frac{1}{(1-G)^2})-2})
最后还要变成无根,除掉(n)即可
仙人掌转荒漠您只需要一个( ext{exp})就好了
const int L=18,N=1<<L|10,P=998244353;
ll qpow(ll x,ll k=P-2) {
ll res=1;
for(;k;k>>=1,x=x*x%P) if(k&1) res=res*x%P;
return res;
}
int I[N],J[N];
int rev[N],w[N];
void Init(){
w[1<<(L-1)]=1;
int t=qpow(3,(P-1)>>L);
rep(i,(1<<(L-1))+1,1<<L) w[i]=1ll*w[i-1]*t%P;
drep(i,(1<<(L-1))-1,1) w[i]=w[i<<1];
rep(i,J[0]=1,N-1) J[i]=1ll*J[i-1]*i%P;
I[N-1]=qpow(J[N-1]);
drep(i,N-1,1) I[i-1]=1ll*I[i]*i%P;
}
int Init(int n){
int R=1,c=-1;
while(R<=n) R<<=1,c++;
rep(i,0,R-1) rev[i]=(rev[i>>1]>>1)|((i&1)<<c);
return R;
}
void NTT(int n,V &A,int f) {
static ull a[N];
if((int)A.size()<n) A.resize(n);
rep(i,0,n-1) a[rev[i]]=A[i];
for(int i=1;i<n;i<<=1) {
int *e=w+i;
for(int l=0;l<n;l+=i*2) {
for(int j=l;j<l+i;++j) {
int t=a[j+i]*e[j-l]%P;
a[j+i]=a[j]+P-t;
a[j]+=t;
}
}
}
rep(i,0,n-1) A[i]=a[i]%P,Mod2(A[i]);
if(f==-1) {
reverse(A.begin()+1,A.end());
ll base=1ll*I[n]*J[n-1]%P;
rep(i,0,n-1) A[i]=A[i]*base%P;
}
}
V operator + (V a,const V &b) {
if(a.size()<b.size()) a.resize(b.size());
rep(i,0,b.size()-1) a[i]+=b[i],Mod1(a[i]);
return a;
}
V operator - (V a,const V &b) {
if(a.size()<b.size()) a.resize(b.size());
rep(i,0,b.size()-1) a[i]-=b[i],Mod2(a[i]);
return a;
}
V operator * (V a,V b) {
int n=a.size()-1,m=b.size()-1;
int R=Init(n+m);
NTT(R,a,1),NTT(R,b,1);
rep(i,0,R-1) a[i]=1ll*a[i]*b[i]%P;
NTT(R,a,-1),a.resize(n+m+1);
return a;
}
V operator * (V a,const int &x) {
for(int &i:a) i=1ll*i*x%P;
return a;
}
V operator * (const int &x,V a) { return a*x; }
void println(const V &a){
for(int i:a) printf("%d ",i);
puts("");
}
V read(int n){
V A(n);
rep(i,0,n-1) A[i]=rd();
return A;
}
V operator ~ (V a) {
int n=a.size(),m=(n+1)>>1;
if(n==1) return {(int)qpow(a[0])};
V b=a; b.resize(m),b=~b;
int R=Init(n*2);
NTT(R,a,1),NTT(R,b,1);
rep(i,0,R-1) a[i]=(P+2-1ll*a[i]*b[i]%P)*b[i]%P;
NTT(R,a,-1),a.resize(n);
return a;
}
V Deriv(V a) {
rep(i,0,a.size()-2) a[i]=1ll*(i+1)*a[i+1]%P;
a.pop_back();
return a;
}
V Integ(V a){
a.pb(0);
drep(i,a.size()-1,1) a[i]=1ll*a[i-1]*J[i-1]%P*I[i]%P;
a[0]=0;
return a;
}
V Ln(V a){
int n=a.size();
a=Deriv(a)*~a;
return a.resize(n-1),Integ(a);
}
V Exp(V a) {
if(a.size()==1) return assert(a[0]==0),V{1};
int n=a.size();
V b=a; b.resize((n+1)/2),b=Exp(b),b.resize(n);
a=a-Ln(b),a[0]++;
a=a*b,a.resize(n);
return a;
}
V operator << (V a,int x) {
a.resize(a.size()+x);
drep(i,a.size()-1,x) a[i]=a[i-x];
rep(i,0,x-1) a[i]=0;
return a;
}
V operator >> (V a,int x) {
if((int)a.size()<=x) return V{};
rep(i,x,a.size()-1) a[i-x]=a[i];
a.resize(a.size()-x);
return a;
}
V Newton(int n){
if(n==1) return V{0};
if(n==2) return V{0,1};
V G=Newton((n+1)/2); G.resize(n);
V IG=~(V{1}-G);
V H=(2*G-G*G); H.resize(n),H=H*IG*((P+1)/2),H.resize(n),H=Exp(H)<<1;
V F=IG*IG; F.resize(n),F[0]++;
F=H*F,F.resize(n),F[0]-=2,Mod2(F[0]);
F=G-2*(H-G)*~F;
return F.resize(n),F;
}
int main(){
int n=rd()+1; Init();
V F=Newton(n);
rep(i,1,F.size()-1) F[i]=1ll*F[i]*I[i]%P*J[i-1]%P;
F=Exp(F);
printf("%d
",int(1ll*F.back()*J[n-1]%P));
}