Java描述表达式求值的两种解法:双栈结构和二叉树
原题大意:表达式求值
求一个非负整数四则混合运算且含嵌套括号表达式的值。如:
# 输入:
1+2*(6/2)-4
# 输出:
3.0
数据保证:
- 保证表达式合法(含除数不为0)。
- 保证运算数是非负整数。
双栈版
维护两个栈: 符号栈,数字栈,遍历输入串过程中计算
- 数字直接入栈
- 符号入栈
a. 符号栈为空
b. 当前符号优先于栈顶符号
c. 栈顶为'(' - 符号出栈计算: 栈顶符号非'(' 且 优先级更高.
class ExpStack {
private static final String LEVEL_OPTS = ")+-*/(";
public double solve(String input) {
Stack<Character> optStack = new Stack<>();
Stack<Double> numStack = new Stack<>();
int i = 0;
while (i < input.length()) {
if (Character.isDigit(input.charAt(i))) { // 如果是数字直接入栈
int t = 0;
for (; i < input.length() && Character.isDigit(input.charAt(i)); i++) {
t = t * 10 + input.charAt(i) - '0';
}
numStack.push((double) t);
} else {// 如果是操作符
//栈为空 或 当前优先于栈顶: 入栈
if (optStack.isEmpty() || compPriority(input.charAt(i), optStack.peek()) > 0) {
optStack.push(input.charAt(i++));
} else if (optStack.peek() == '(') { // 栈顶为左括号 '('
if (input.charAt(i) == ')') { // 括号完成: 弹出'('
optStack.pop();
} else { // 括号开始 : 入栈
optStack.push(input.charAt(i));
}
i++;
} else { // 栈顶优先级更高且非 '(' : 运算
double top = numStack.pop();
numStack.push(calc(numStack.pop(), optStack.pop(), top));
}
}
}
while (!optStack.isEmpty()) {
double top = numStack.pop();
numStack.push(calc(numStack.pop(), optStack.pop(), top));
}
return numStack.pop();
}
private int compPriority(char c1, char c2) {
return LEVEL_OPTS.indexOf(c1) - LEVEL_OPTS.indexOf(c2);
}
private double calc(double x, char o, double y) {
switch (o) {
case '+':
return x + y;
case '-':
return x - y;
case '*':
return x * y;
case '/':
return x / y;
}
return 0;
}
}
二叉树版
构建二叉树: 非叶子节点为符号,叶子节点为数字. 最终后序搜索计算
二分点: 表达式中最后一个计算的运算符
- 排除括号后
- 优先取 + | -
- 再考虑 * | /
class ExpTree {
private String mInput;
private java.util.LinkedList<Node> mTree;
public double solve(String input) {
mInput = input;
mTree = new java.util.LinkedList<>();
buildTree(0, mInput.length());
return dfs(mTree.size() - 1);
}
private int buildTree(int li, int ri) {
try { // 先尝试吧表达式解析为叶子节点(纯运算数)
int n = Integer.parseInt(mInput.substring(li, ri));
Node node = new Node(n, -1, -1);
mTree.addLast(node);
return mTree.size() - 1;
} catch (Exception ignore) {
}
// 找到最外层的运算符(最后一个计算的运算符,优先级最低的符号)
int opt, as = -1, md = -1, bracket = 0;
for (int i = li; i < ri; i++) {
switch (mInput.charAt(i)) {
case '(':
bracket++;
break;
case ')':
bracket--;
break;
case '+':
case '-':
if (bracket == 0) {
as = i;
}
break;
case '*':
case '/':
if (bracket == 0) {
md = i;
}
break;
}
}
opt = as < 0 ? md : as;
if (opt < 0) { // 发现这是一个被括号包裹的表达式(去掉括号重新构造)
return buildTree(li + 1, ri - 1);
}
// 依次构造左右子树
Node node = new Node(mInput.charAt(opt), buildTree(li, opt), buildTree(opt + 1, ri));
mTree.addLast(node);
return mTree.size() - 1;
}
private double dfs(int i) { // 后序遍历求解
if (mTree.get(i).lch == -1 && mTree.get(i).rch == -1) {
return mTree.get(i).num;
}
switch (mTree.get(i).opt) {
case '+':
return dfs(mTree.get(i).lch) + dfs(mTree.get(i).rch);
case '-':
return dfs(mTree.get(i).lch) - dfs(mTree.get(i).rch);
case '*':
return dfs(mTree.get(i).lch) * dfs(mTree.get(i).rch);
case '/':
return dfs(mTree.get(i).lch) / dfs(mTree.get(i).rch);
}
return 0;
}
private static class Node {
double num;
char opt;
int lch, rch;
Node(double n, int l, int r) {
num = n;
initChild(l, r);
}
Node(char o, int l, int r) {
opt = o;
initChild(l, r);
}
private void initChild(int l, int r) {
lch = l;
rch = r;
}
}
}
测试驱动函数
public class Main {
public static void main(String[] args) {
Scanner cin = new Scanner(System.in);
String input = cin.nextLine();
double t = new ExpTree().solve(input);
T.d(t);
double s = new ExpStack().solve(input);
T.d(s);
}
}