zoukankan      html  css  js  c++  java
  • HDU 2838 Cow Sorting

    http://acm.hdu.edu.cn/showproblem.php?pid=2838

    Problem Description
    Sherlock's N (1 ≤ N ≤ 100,000) cows are lined up to be milked in the evening. Each cow has a unique "grumpiness" level in the range 1...100,000. Since grumpy cows are more likely to damage Sherlock's milking equipment, Sherlock would like to reorder the cows in line so they are lined up in increasing order of grumpiness. During this process, the places of any two cows (necessarily adjacent) can be interchanged. Since grumpy cows are harder to move, it takes Sherlock a total of X + Y units of time to exchange two cows whose grumpiness levels are X and Y.

    Please help Sherlock calculate the minimal time required to reorder the cows.
     


    Input
    Line 1: A single integer: N
    Lines 2..N + 1: Each line contains a single integer: line i + 1 describes the grumpiness of cow i.
     


    Output
    Line 1: A single line with the minimal time required to reorder the cows in increasing order of grumpiness.
     


    Sample Input
    3 2 3 1
     


    Sample Output
    7
    Hint
    Input Details Three cows are standing in line with respective grumpiness levels 2, 3, and 1. Output Details 2 3 1 : Initial order. 2 1 3 : After interchanging cows with grumpiness 3 and 1 (time=1+3=4). 1 2 3 : After interchanging cows with grumpiness 1 and 2 (time=2+1=3).
     

    思路:

    每个点的代价,就是前面比它大的点的个数乘以这个点再加上前面比它大的点的总和

    然后树状数组乱搞

    #include<bits/stdc++.h>
    using namespace std;
    #define N 100005
    #define ll long long int
    int a[N],cnt[N],n,k,t;
    ll sum[N],ans;
    
    int lowbit(int x)
    {
        return x&(-x);
    }
    
    void add(int x)
    {
        int d=x;
        while(x<=n)
        {
            cnt[x]++;
            sum[x]+=d;
            x+=lowbit(x);
        }
    }
    
    int sum1(int x)
    {
        int s=0;
        while(x)
        {
            s+=cnt[x];
            x-=lowbit(x);
        }
        return s;
    }
    
    ll sum2(int x)
    {
        ll s=0;
        while(x)
        {
            s+=sum[x];
            x-=lowbit(x);
        }
        return s;
    }
    
    int main()
    {
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            add(a[i]);
            t=sum1(a[i]);
            k=i-t;
            if(k!=0)
            {
                ans+=(ll)a[i]*k;
                ans+=sum2(n)-sum2(a[i]);
            }
        }
        printf("%I64d
    ",ans);
        return 0;
    }
    View Code
  • 相关阅读:
    聊聊什么是慢查、如何监控?如何排查?
    navicat连接sqlserver数据库提示:未发现数据源名并且未指定默认驱动程序
    定位元素的父(parent::)、兄弟(following-sibling::、preceding-sibling::)节点
    java方法返回值前面的泛型是什么?
    java8Lambda的环绕执行模式
    try语法糖
    php-fpm优化内存占用大
    Gitlab安装
    第2章 python入门
    LAMP源码安装
  • 原文地址:https://www.cnblogs.com/chen74123/p/7397514.html
Copyright © 2011-2022 走看看