zoukankan      html  css  js  c++  java
  • fibonacci数列的和取余(2)

    Maybe ACMers of HIT are always fond of fibonacci numbers, because it is so beautiful. Don't you think so? At the same time,fishcanfly always likes to change and this time he thinks about the following series of numbers which you can guess is derived from the definition of fibonacci number.

    The definition of fibonacci number is:

    f(0) = 0, f(1) = 1, and for n>=2, f(n) = f(n - 1) + f(n - 2)

    We define the new series of numbers as below:

    f(0) = a, f(1) = b, and for n>=2, f(n) = p*f(n - 1) + q*f(n - 2),where p and q are integers.

    Just like the last time, we are interested in the sum of this series from the s-th element to the e-th element, that is, to calculate .""""

    Great!Let's go!

    Input

    The first line of the input file contains a single integer t (1 <= t <= 30), the number of test cases, followed by the input data for each test case.

    Each test case contains 6 integers a,b,p,q,s,e as concerned above. We know that -1000 <= a,b <= 1000,-10 <= p,q <= 10 and 0 <= s <= e <= 2147483647.

    Output

    One line for each test case, containing a single interger denoting S MOD (10^7) in the range [0,10^7) and the leading zeros should not be printed.

    Sample Input

    2
    0 1 1 -1 0 3
    0 1 1 1 2 3
    

    Sample Output

    2
    3

    #include <iostream>
    #include <cstdio>
    #include <cmath>
    using namespace std;
    const long long mod=1e7;
    
    typedef struct
    {
      long long m[3][3];
    }mat;
    
    mat I={1,0,0,0,1,0,0,0,1};
    
    mat calc(mat a,mat b)              //矩阵相乘计算
    {
        int i,j,k;
        mat c;
        for(i=0;i<3;i++)
        for(j=0;j<3;j++)
        {
            c.m[i][j]=0;
           for(k=0;k<3;k++)
          {
            c.m[i][j]+=(a.m[i][k]*b.m[k][j]+mod)%mod;
          }
          c.m[i][j]=(c.m[i][j]+mod)%mod;
        }
        return c;
    }
    
    mat matirx(mat P,long long n)    //矩阵快速幂(二分法)
    {
        mat m=P,b=I;
        while(n>=1)
        {
            if(n&1) b=calc(b,m);
            n>>=1;
            m=calc(m,m);
        }
        return b;
    }
    
    int main()
    {
        int t,a,b,p,q;
        long long s,e,sum;
        cin>>t;
        while(t--)
        {
            sum=0;
            scanf("%d%d%d%d%lld%lld",&a,&b,&p,&q,&s,&e);
            mat x,y,P={p,q,0,1,0,0,1,0,1};      //p,q由输入决定,不能在全局定义mat P
            y=matirx(P,e);
            sum=(b*y.m[2][0]+a*y.m[2][1]+a*y.m[2][2])%mod;
            sum=(sum+mod)%mod;
            if(s>1)
            {
                x=matirx(P,s-1);
                sum=sum-(b*x.m[2][0]+a*x.m[2][1]+a*x.m[2][2])%mod;
                sum=(sum+mod)%mod;
            }
            else if(s==1)
               sum-=a;
            sum=(sum+mod)%mod;
            printf("%lld
    ",sum);
        }
        return 0;
    }
    

      

  • 相关阅读:
    GPON和820.1p学习及资料(zt)
    modelsim(3)
    JTAG 学习 -SVF格式
    看来人工智能不可阻挡,将和网络与计算机一样服务于各行各业!
    【管理心得之二十六】职场中的“武功”
    【管理心得之二十五】组织中的骂名 ----------墙头草
    【管理心得之二十四】成功乃失败之母
    【管理心得之二十三】道是道,非常道。名可名,非常名。
    【管理心得之二十二】小人物 仰视 大授权
    【管理心得之二十一】管得少就是管得好
  • 原文地址:https://www.cnblogs.com/chen9510/p/4734677.html
Copyright © 2011-2022 走看看