zoukankan      html  css  js  c++  java
  • fibonacci封闭公式及矩阵连乘

    Description

    The Fibonacci sequence is the sequence of numbers such that every element is equal to the sum of the two previous elements, except for the first two elements f0 and f1 which are respectively zero and one. 

    What is the numerical value of the nth Fibonacci number?
     

    Input

    For each test case, a line will contain an integer i between 0 and 10 8 inclusively, for which you must compute the ith Fibonacci number fi. Fibonacci numbers get large pretty quickly, so whenever the answer has more than 8 digits, output only the first and last 4 digits of the answer, separating the two parts with an ellipsis (“...”). 

    There is no special way to denote the end of the of the input, simply stop when the standard input terminates (after the EOF). 
     

    Sample Input

    0 1 2 3 4 5 35 36 37 38 39 40 64 65
     

    Sample Output

    0 1 1 2 3 5 9227465 14930352 24157817 39088169 63245986 1023...4155 1061...7723 1716...7565
    #include <iostream>
    #include <cstdio>
    #include <cmath>
    using namespace std;
    
    typedef struct
    {
      long long m[2][2];
    }mat;
    
    mat p={0,1,1,1},I={1,0,0,1};
    
    mat calc(mat a,mat b)
    {
        int i,j,k;
        mat c;
        for(i=0;i<2;i++)
        for(j=0;j<2;j++)
        {
            c.m[i][j]=0;
           for(k=0;k<2;k++)
          {
            c.m[i][j]+=a.m[i][k]*b.m[k][j]%10000;
          }
          c.m[i][j]%=10000;
        }
        return c;
    }
    
    mat matirx(int n)
    {
        mat m=p,b=I;
        while(n>=1)
        {
            if(n&1) b=calc(b,m);
            n>>=1;
            m=calc(m,m);
        }
        return b;
    }
    
    int main()
    {
        int i,a[42],len;
        int n;
        double s,d;
        a[0]=0;
        a[1]=1;
        for(i=2; i<40; i++)
            a[i]=a[i-1]+a[i-2];
        while(scanf("%d",&n)!=EOF)
        {
            if(n<40)
                printf("%d
    ",a[n]);
            else
            {
                s=log10(1.0/sqrt(5))+n*log10((1+sqrt(5))/2.0);//fibonacci封闭公式求前四位
                len=(int)s;
                d=s+3-len;
                printf("%d...",(int)pow(10,d));
    
                mat tmp;
                tmp=matirx(n);                                //矩阵连乘求后四位
                printf("%04d
    ",tmp.m[0][1]);
            }
        }
        return 0;
    }
  • 相关阅读:
    Ubuntu部分命令的使用简介
    向Ubuntu的Dash中添加图标
    Ubuntu下实现gedit支持nesC语法高亮
    zoj 1453 Surround the Trees(凸包求周长)
    fzu 1015 土地划分(判断线段相交+求出交点+找规律)
    zoj 1648 判断线段是否相交
    hdu 1086(计算几何入门题——计算线段交点个数)
    zoj 1081 判断点在多边形内
    判点在直线上,三角形内
    poj 1269 Intersecting Lines(判相交交点与平行)
  • 原文地址:https://www.cnblogs.com/chen9510/p/4734709.html
Copyright © 2011-2022 走看看