zoukankan      html  css  js  c++  java
  • fibonacci封闭公式及矩阵连乘

    Description

    The Fibonacci sequence is the sequence of numbers such that every element is equal to the sum of the two previous elements, except for the first two elements f0 and f1 which are respectively zero and one. 

    What is the numerical value of the nth Fibonacci number?
     

    Input

    For each test case, a line will contain an integer i between 0 and 10 8 inclusively, for which you must compute the ith Fibonacci number fi. Fibonacci numbers get large pretty quickly, so whenever the answer has more than 8 digits, output only the first and last 4 digits of the answer, separating the two parts with an ellipsis (“...”). 

    There is no special way to denote the end of the of the input, simply stop when the standard input terminates (after the EOF). 
     

    Sample Input

    0 1 2 3 4 5 35 36 37 38 39 40 64 65
     

    Sample Output

    0 1 1 2 3 5 9227465 14930352 24157817 39088169 63245986 1023...4155 1061...7723 1716...7565
    #include <iostream>
    #include <cstdio>
    #include <cmath>
    using namespace std;
    
    typedef struct
    {
      long long m[2][2];
    }mat;
    
    mat p={0,1,1,1},I={1,0,0,1};
    
    mat calc(mat a,mat b)
    {
        int i,j,k;
        mat c;
        for(i=0;i<2;i++)
        for(j=0;j<2;j++)
        {
            c.m[i][j]=0;
           for(k=0;k<2;k++)
          {
            c.m[i][j]+=a.m[i][k]*b.m[k][j]%10000;
          }
          c.m[i][j]%=10000;
        }
        return c;
    }
    
    mat matirx(int n)
    {
        mat m=p,b=I;
        while(n>=1)
        {
            if(n&1) b=calc(b,m);
            n>>=1;
            m=calc(m,m);
        }
        return b;
    }
    
    int main()
    {
        int i,a[42],len;
        int n;
        double s,d;
        a[0]=0;
        a[1]=1;
        for(i=2; i<40; i++)
            a[i]=a[i-1]+a[i-2];
        while(scanf("%d",&n)!=EOF)
        {
            if(n<40)
                printf("%d
    ",a[n]);
            else
            {
                s=log10(1.0/sqrt(5))+n*log10((1+sqrt(5))/2.0);//fibonacci封闭公式求前四位
                len=(int)s;
                d=s+3-len;
                printf("%d...",(int)pow(10,d));
    
                mat tmp;
                tmp=matirx(n);                                //矩阵连乘求后四位
                printf("%04d
    ",tmp.m[0][1]);
            }
        }
        return 0;
    }
  • 相关阅读:
    LOJ#2245 魔法森林
    洛谷P1173 [NOI2016]网格
    [NOI2018]归程
    宇宙旅行
    hdu 4027 Can you answer these queries?(线段树)
    poj 1661 Help Jimmy(记忆化搜索)
    hdu 1078 FatMouse and Cheese(简单记忆化搜索)
    poj 3616 Milking Time (基础dp)
    hdu 1074 Doing Homework(状压dp)
    codeforces 735C. Tennis Championship(贪心)
  • 原文地址:https://www.cnblogs.com/chen9510/p/4734709.html
Copyright © 2011-2022 走看看