zoukankan      html  css  js  c++  java
  • hdu 6049---Sdjpx Is Happy(区间DP+枚举)

    题目链接

    Problem Description
    Sdjpx is a powful man,he controls a big country.There are n soldiers numbered 1~n(1<=n<=3000).But there is a big problem for him.He wants soldiers sorted in increasing order.He find a way to sort,but there three rules to obey.
    1.He can divides soldiers into K disjoint non-empty subarrays.
    2.He can sort a subarray many times untill a subarray is sorted in increasing order.
    3.He can choose just two subarrays and change thier positions between themselves.
    Consider A = [1 5 4 3 2] and P = 2. A possible soldiers into K = 4 disjoint subarrays is:A1 = [1],A2 = [5],A3 = [4],A4 = [3 2],After Sorting Each Subarray:A1 = [1],A2 = [5],A3 = [4],A4 = [2 3],After swapping A4 and A2:A1 = [1],A2 = [2 3],A3 = [4],A4 = [5].
    But he wants to know for a fixed permutation ,what is the the maximum number of K?
    Notice: every soldier has a distinct number from 1~n.There are no more than 10 cases in the input.
     
    Input
    First line is the number of cases.
    For every case:
    Next line is n.
    Next line is the number for the n soildiers.
     
    Output
    the maximum number of K.
    Every case a line.
     
    Sample Input
    2
    5
    1 5 4 3 2
    5
    4 5 1 2 3
     
    Sample Output
    4
    2
     
     
    题意:输入一个1~n的排列,现在要求通过以下三种动作将之变成一个单调上升的序列,三种动作如下:
              1、将这个序列分成K段
              2、可以将任意一个段中的数进行排序,使之变成上升的序列(可以对多个段进行操作)
         3、可以对其中的两个段交换位置,只能交换一次
              求最大的K值?
     
    思路:定义f[i][j]表示 i 到 j 之间的区间能分成多少个合法的段(合法的段表示这个区间中的数排序后是一个连续的数列,f[i][j]表示段内排好序后,段与段之间也是保持连续的如段312 和 465 ,123456连续), 通过区间DP可以求出所有 f[i][j],还需要求出每个区间的最大值最小值 mx[][] , mn[][] , 之后枚举所有的子区间。
             对于其中每一个子区间[i,j] , 如果f[i][j]>0,那么就表示i到j排完序后是连续的,否则直接枚举计算下一个区间。当 f[i][j]>0,k=mx[i][j] , 那么区间[i,j]应该和[t,k]区间进行交换位置,t目前还不确定,所以需要枚举t (j<t<=k), 那么必须有: f[1][i-1] >0&&mn[1][i-1]=1 或者i==1  ,mn[t][k]=i,f[k+1][n]>0 && mx[k+1][n]=n 或者 k==n ,ans=max(ans,f[1][i-1]+1+f[j+1][t-1]+1+f[k+1][n]) 。

    代码如下:
    #include <iostream>
    #include <algorithm>
    #include <cstdio>
    #include <cstring>
    using namespace std;
    const int N=3e3+5;
    int f[N][N];
    int mx[N][N],mn[N][N],R[N];
    
    int main()
    {
        ///cout << "Hello world!" << endl;
        int T; cin>>T;
        while(T--)
        {
           int n; scanf("%d",&n);
           memset(f,0,sizeof(f));
           for(int i=1;i<=n;i++)
           {
              scanf("%d",&mx[i][i]);
              mn[i][i]=mx[i][i];
              f[i][i]=1;
              R[i]=i;
           }
           for(int i=1;i<=n;i++)
           {
               for(int j=i+1;j<=n;j++)
               {
                   mx[i][j]=max(mx[i][j-1],mx[j][j]);
                   mn[i][j]=min(mn[i][j-1],mn[j][j]);
               }
           }
           for(int i=2;i<=n;i++)
           {
               for(int j=1;j+i-1<=n;j++)
               {
                   int k=j+i-1;
                   if(mx[j][k]-mn[j][k]+1!=i) f[j][k]=0;
                   else {
                      if(mn[j][k]!=mn[j][R[j]]) f[j][k]=1;
                      else f[j][k]=f[j][R[j]]+f[R[j]+1][k];
                      R[j]=k;
                   }
               }
           }
           int ans=f[1][n];
           for(int i=1;i<=n;i++)
           {
               for(int j=i;j<=n;j++)
               {
                   if(!f[i][j]) continue;
                   if(i==1 || (f[1][i-1]&&mn[1][i-1]==1))
                   {
                       int k=mx[i][j];
                       if(k==n || (f[k+1][n]&&mx[k+1][n]==n))
                       {
                           for(int t=j+1;t<=k;t++)
                           {
                               if(f[t][k]&&mn[t][k]==i)
                                   ans=max(ans,f[1][i-1]+1+f[j+1][t-1]+1+f[k+1][n]);
                           }
                       }
                   }
               }
           }
           printf("%d
    ",ans);
        }
        return 0;
    }
              
  • 相关阅读:
    js笔记——js里var与变量提升
    微信授权机制
    HTML5的sessionStorage和localStorage
    博客园主题响应式布局
    [转]五种开源协议的比较(BSD,Apache,GPL,LGPL,MIT)
    搭建jekyll博客
    Oracle VM VirtualBox技巧
    jQuery实现全选、全不选、反选
    js里slice,substr和substring的区别
    js里cookie操作
  • 原文地址:https://www.cnblogs.com/chen9510/p/7295903.html
Copyright © 2011-2022 走看看