zoukankan      html  css  js  c++  java
  • hdu6638 线段树求最大子段和

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6638

    Problem Description
    There are pirate chests buried in Byteland, labeled by 1,2,,n. The i-th chest's location is (xi,yi) , and its value is wi , wi can be negative since the pirate can add some poisonous gases into the chest. When you open the i -th pirate chest, you will get wi value.

    You want to make money from these pirate chests. You can select a rectangle, the sides of which are all paralleled to the axes, and then all the chests inside it or on its border will be opened. Note that you must open all the chests within that range regardless of their values are positive or negative. But you can choose a rectangle with nothing in it to get a zero sum.

    Please write a program to find the best rectangle with maximum total value.
     
    Input
    The first line of the input contains an integer T(1T100), denoting the number of test cases.

    In each test case, there is one integer n(1n2000) in the first line, denoting the number of pirate chests.

    For the next n lines, each line contains three integers xi,yi,wi(109xi,yi,wi109) , denoting each pirate chest.

    It is guaranteed that n10000 .
     
    Output
    For each test case, print a single line containing an integer, denoting the maximum total value.
     
    Sample Input
    2
    4
    1 1 50
    2 1 50
    1 2 50
    2 2 -500
    2
    -1 1 5
    -1 1 1
     
    Sample Output
    100
    6
     
     
    将点按纵坐标从小到大排序并将点离散化,枚举纵坐标确定矩形下边界,依次往后向线段树加入纵坐标相同的点,每加完纵坐标相同的点(确认矩形上边界)就求一次x轴的最大字段和并更新答案
    #include<iostream>
    #include<algorithm>
    using namespace std;
    #define maxn 2005
    #define ll long long
    #define ls l,mid,rt<<1
    #define rs mid+1,r,rt<<1|1
    struct node{
        ll sum,lsum,rsum,msum;
    }tr[maxn<<2];
    struct ww{
        ll x,y,val;
        bool operator <(const ww &w)const{
            if(y==w.y)return x<w.x;
            return y<w.y;
        }
    }a[maxn];
    inline void pushup(int rt)
    {
        tr[rt].sum=tr[rt<<1].sum+tr[rt<<1|1].sum;
        tr[rt].lsum=max(tr[rt<<1].lsum,tr[rt<<1].sum+tr[rt<<1|1].lsum);
        tr[rt].rsum=max(tr[rt<<1|1].rsum,tr[rt<<1|1].sum+tr[rt<<1].rsum);
        tr[rt].msum=max(max(tr[rt<<1].msum,tr[rt<<1|1].msum),tr[rt<<1|1].lsum+tr[rt<<1].rsum);
    }
    inline void build(int l,int r,int rt)
    {
        if(l==r)
        {
            tr[rt].sum=tr[rt].msum=tr[rt].lsum=tr[rt].rsum=0;
            return ;
        }
        int mid=l+r>>1;
        build(ls);build(rs);
        pushup(rt);
    }
    inline void update(int L,int c,int l,int r,int rt)
    {
        if(l==r)
        {
            tr[rt].sum=tr[rt].msum=tr[rt].lsum=tr[rt].rsum+=1ll*c;
            return ;
        }
        int mid=l+r>>1;
        if(L<=mid)update(L,c,ls);
        else update(L,c,rs);
        pushup(rt);
    }
    ll x[maxn],y[maxn];
    int main()
    {
        int t;
        cin>>t;
        while(t--)
        {
            int n;
            cin>>n;
            for(int i=1;i<=n;i++)
            {
                cin>>a[i].x>>a[i].y>>a[i].val;
                x[i]=a[i].x;y[i]=a[i].y;
            }
            sort(x+1,x+1+n);
            sort(y+1,y+1+n);
            int lenx=unique(x+1,x+1+n)-x-1;
            int leny=unique(y+1,y+1+n)-y-1;
            for(int i=1;i<=n;i++)
            {
                a[i].x=lower_bound(x+1,x+1+lenx,a[i].x)-x;
                a[i].y=lower_bound(y+1,y+1+leny,a[i].y)-y;
            }
            sort(a+1,a+1+n);
            ll ans=0;
            for(int i=1;i<=leny;i++)//确定矩形下边界 
            {
                build(1,lenx,1);
                int pos=1;
                while(a[pos].y<i)pos++;
                for(int j=i;j<=leny;j++)//确定矩形上边界 
                {
                    for(;a[pos].y==j;pos++)//插入纵坐标相同的点 
                    {
                        update(a[pos].x,a[pos].val,1,lenx,1);
                    }
                    ans=max(ans,tr[1].msum);//更新答案 
                }
            }
            cout<<ans<<endl;
        }
        return 0;
    }
  • 相关阅读:
    CCF NOI1032 菱形
    CCF NOI1031 等腰三角形
    CCF NOI1030 角谷猜想
    CCF NOI1029 信息加密
    CCF NOI1028 判断互质
    CCF NOI1027 数字之和
    CCF NOI1026 表演打分
    CCF NOI1025 统计奖牌
    CCF NOI1024 因子个数
    CCF NOI1023 最大跨度
  • 原文地址:https://www.cnblogs.com/chen99/p/11394884.html
Copyright © 2011-2022 走看看