zoukankan      html  css  js  c++  java
  • day8 视频学习日记

    Logistic回归损失函数
    损失函数(loss)
    • 损失函数又叫做误差函数,用来衡量算法的运行情况,是预测值与实际值的差距,Loss function :L(y^,y)

    • 衡量的是算法在单个训练样本中表现

    • 损失函数越小,说明预测输出值和实际值越接近

    • 在线性回归中我们看到损失函数的式子是用预测值和实际值的平方差或者它们平方差:loss=(y^-y)2

    • 在逻辑回归中我们不这么做,因为平方差会使得有多个局部最优值,在逻辑回归的损失函数是:

      loss=-ylog(y^)-(1-y)log(1-y^)
    • 那么为什么上面式子符合呢?

      1. 前面几节讲过y的取值是{0,1},y^是图片是猫图的概率,一个概率值取值在(0,1)
      2. 所以我们需要一个损失函数满足:loss越小时,y与y^越接近
      3. 当 y=1时损失函数 L = − log ⁡ ( y^) ,如果想要损失函数 L 尽可能得小,那么 y^ 就要尽可能大,因为sigmoid函数取值 [ 0 , 1 ] ,所以 y^ 会无限接近于1。
      4. 当 y=0时损失函数 L = − log ⁡ (1- y^) ,如果想要损失函数 L 尽可能得小,那么 y^ 就要尽可能大,因为sigmoid函数取值 [ 0 , 1 ] ,所以 y^ 会无限接近于0
    成本函数(cost)
    • 衡量算法在全部训练样本上的表现

    • 算法的代价函数是对 m 个样本的损失函数求和然后除以 m

    • 公式:

      image-20210116212515913

  • 相关阅读:
    Shell 函数
    Shell 流程控制
    Shell test 命令
    Shell echo命令
    python 类、模块、包的区别
    postgresql vacuum table
    ssh连接断开后 shell进程退出
    ubuntu 搭建 svn服务器,使用http方式访问
    如何查看apache加载了哪些模块
    maven 的使用
  • 原文地址:https://www.cnblogs.com/chenaiiu/p/14279762.html
Copyright © 2011-2022 走看看