zoukankan      html  css  js  c++  java
  • UVA 796 Critical Links(无向图求桥)

    题目大意:给你一个网络要求这里面的桥。
    输入数据:
    n 个点
    点的编号  (与这个点相连的点的个数m)  依次是m个点的
     
    输入到文件结束。
    桥输出的时候需要排序
     
    知识汇总:
    桥:   无向连通图中,如果删除某条边后,图变成不连通了,则该边为桥。
    求桥:
    在求割点的基础上吗,假如一个边没有重边(重边 1-2, 1->2 有两次,那么 1->2 就是有两条边了,那么 1->2就不算是桥了)。
    当且仅当 (u,v) 为父子边,且满足 dfn[u] < low[v]
    这里对重边处理的时候用了两种方法。写了两个代码,也挺简单的。
    #include <iostream>
    #include <cstdlib>
    #include <cstdio>
    #include <algorithm>
    #include <vector>
    #include <queue>
    #include <cmath>
    #include <stack>
    #include <cstring>
    using namespace std;
    #define INF 0xfffffff
    #define maxn 11005
    #define min(a,b) (a<b?a:b)
    struct node
    {
        int x, y;
        bool friend operator < (node A,node B)
        {
            if(A.x == B.x)
                return A.y < B.y;
            return A.x < B.x;
        }
    }bridge[maxn];
    int n, dfn[maxn], low[maxn], Father[maxn], Time;
    vector<int> G[maxn];
    
    void init()
    {
        memset(dfn, 0, sizeof(dfn));
        memset(low, 0, sizeof(low));
        memset(Father, 0, sizeof(Father));
        Time = 0;
        for(int i=0; i<n; i++)
            G[i].clear();
    }
    
    void Tarjan(int u,int fa)
    {
        Father[u] = fa;
        low[u] = dfn[u] = ++Time;
        int len = G[u].size(), v, k = 0;
    
        for(int i=0; i<len; i++)
        {
            v = G[u][i];
    
            if(v == fa && !k)
            {
                k ++;
                continue;
            }
            if( !low[v] )
            {
                Tarjan(v, u);
                low[u] = min(low[u], low[v]);
            }
            else
                low[u] = min(low[u], dfn[v]);
        }
    }
    
    void solve()
    {
        int ans = 0;
        for(int i=0; i<n; i++)
        {
            if(!dfn[i])
                Tarjan(i,-1);
        }
    
    
        for(int i=0; i<n; i++)
        {
            int v = Father[i];
            if(dfn[v] < low[i] && v != -1)
            {
    
                bridge[ans].x = i;
                bridge[ans].y = v;
    
                if(bridge[ans].x > bridge[ans].y)
                    swap(bridge[ans].x, bridge[ans].y);
                ans ++;
            }
        }
        sort(bridge, bridge + ans);
    
        printf("%d critical links
    ", ans);
    
        for(int i=0; i<ans; i++)
        {
            printf("%d - %d
    ",bridge[i].x,bridge[i].y);
        }
        printf("
    ");
    }
    
    int main()
    {
        while(scanf("%d",&n) != EOF)
        {
            init();
            for(int i=0; i<n; i++)
            {
                int a, b, m;
                scanf("%d (%d)",&a,&m);
    
                while(m--)
                {
                    scanf("%d", &b);
                    G[a].push_back(b);
                   // G[b].push_back(a);
                }
            }
            solve();
        }
        return 0;
    }
    
    /**
    8
    0 (1) 1
    1 (3) 2 0 3
    2 (2) 1 3
    3 (3) 1 2 4
    4 (1) 3
    7 (1) 6
    6 (1) 7
    5 (0)
    */
    
    #include <iostream>
    #include <cstdlib>
    #include <cstdio>
    #include <algorithm>
    #include <vector>
    #include <queue>
    #include <cmath>
    #include <stack>
    #include <cstring>
    usingnamespace std;
    #define INF 0xfffffff
    #define maxn 11005
    #define min(a,b) (a<b?a:b)
    /** 无向图求桥 **/struct node
    {
        int x, y;
        bool friend operator < (node A,node B)
        {
            if(A.x == B.x)
                return A.y < B.y;
            return A.x < B.x;
        }
    }bridge[maxn];
    int n, dfn[maxn], low[maxn], Father[maxn], Time;
    vector<int> G[maxn];
    
    void init()
    {
        memset(dfn, 0, sizeof(dfn));
        memset(low, 0, sizeof(low));
        memset(Father, 0, sizeof(Father));
        Time = 0;
        for(int i=0; i<n; i++)
            G[i].clear();
    }
    
    void Tarjan(int u,int fa)
    {
        Father[u] = fa;
        low[u] = dfn[u] = ++Time;
        int len = G[u].size(), v;
    
        for(int i=0; i<len; i++)
        {
            v = G[u][i];
    
            if( !low[v] )
            {
                Tarjan(v, u);
                low[u] = min(low[u], low[v]);
            }
            elseif(fa != v)
                low[u] = min(low[u], dfn[v]);
        }
    }
    
    void solve()
    {
        int ans = 0;
        for(int i=0; i<n; i++)
        {
            if(!low[i])
                Tarjan(i, -1);
        }
    
        for(int i=0; i<n; i++)
        {
            int v = Father[i];
            if(v != -1 && dfn[v] < low[i])
            {
    
                bridge[ans].x = i;
                bridge[ans].y = v;
    
                if(bridge[ans].x > bridge[ans].y)
                    swap(bridge[ans].x, bridge[ans].y);
                ans ++;
            }
        }
        sort(bridge, bridge + ans);
    
        printf("%d critical links
    ", ans);
    
        for(int i=0; i<ans; i++)
        {
            printf("%d - %d
    ",bridge[i].x,bridge[i].y);
        }
        printf("
    ");
    }
    
    int main()
    {
        while(scanf("%d",&n) != EOF)
        {
            init();
            for(int i=0; i<n; i++)
            {
                int a, b, m;
                scanf("%d (%d)",&a,&m);
    
                while(m--)
                {
                    scanf("%d", &b);
                    G[a].push_back(b);
                    G[b].push_back(a);
                }
            }
            solve();
        }
        return0;
    }
    
     
  • 相关阅读:
    支持向量机SVM知识点概括
    决策树知识点概括
    HDU 3081 Marriage Match II
    HDU 3572 Task Schedule
    HDU 4888 Redraw Beautiful Drawings
    Poj 2728 Desert King
    HDU 3926 Hand in Hand
    HDU 1598 find the most comfortable road
    HDU 4393 Throw nails
    POJ 1486 Sorting Slides
  • 原文地址:https://www.cnblogs.com/chenchengxun/p/4718717.html
Copyright © 2011-2022 走看看