zoukankan      html  css  js  c++  java
  • 2015 HUAS Summer Contest#4~F

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0
    解题思路:题目的意思是求两个字符串的最长子序列。但是需要注意的是:子序列不是子串,子序列这些字符可以是不连续的 但是有先后顺序;而子串是连续的。
    程序代码:
    #include<stdio.h>
    #include<string.h>
    const int maxn=1005;
    char a[maxn],b[maxn];
    int d[maxn][maxn];
    int max(int x,int y)
    {
        if(x>y) return x;
        else return y;
    }
    int main()
    {
        int i,j,t,floag,n,m;
        while(scanf("%s%s",a+1,b+1)!=EOF)
        {
            memset(d,0,sizeof(d));
            n=strlen(a+1);
            m=strlen(b+1);
            for(i=1;i<=n;i++)
            for(j=1;j<=m;j++)
            if(a[i]==b[j])  d[i][j]=d[i-1][j-1]+1;
            else  d[i][j]=max(d[i-1][j],d[i][j-1]);
            printf("%d
    ",d[n][m]);
        }
        return 0;
    }
    
  • 相关阅读:
    观察者模式-Observer
    @Resource、@Autowired、@Qualifier的注解注入及区别
    Java垃圾回收(GC)机制详解
    java什么时候进行垃圾回收,垃圾回收的执行流程
    Log4J.xml配置详解
    springMVC配置拦截器、过滤器、前端控制器时遇到的问题总结
    基于zookeeper实现分布式锁
    数据库索引原理及优化
    数据分析——CentOS7配置时间和ntp
    solr——zookeeper部署
  • 原文地址:https://www.cnblogs.com/chenchunhui/p/4731282.html
Copyright © 2011-2022 走看看